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Preface

FAW 2007, the 1st International “Frontiers in Algorithmics Workshop” took
place in Lanzhou, China, August 1–3, 2007. The FAW symposium aims to pro-
vide a focused forum on current trends in research on algorithms, discrete struc-
tures, and their applications, and to bring together international experts at the
research frontiers in those areas so as to exchange ideas and to present sig-
nificant new results. In response to the Call for Papers, a total of 141 papers
were submitted from 16 countries and regions, of which 33 were accepted. These
papers were selected for nine special focus tracks in the areas of bioinformat-
ics, discrete structures, geometric information processing and communication,
games and incentive analysis, graph algorithms, Internet algorithms and proto-
cols, parameterized algorithms, design and analysis of heuristics, approximate
and online algorithms, and algorithms in medical applications.

We would like to thank the Conference General Chair, Maocheng Cai and Hao
Li, and Advising Committee Chair, Danny Chen, for their leadership, advice and
help on crucial matters concerning the conference. We would like to thank the
International Program Committee and the external referees for spending their
valuable time and effort in the review process. It was a wonderful experience to
work with them.

Finally, we would like to thank the Organizing Committee, led by Lian Li
and Xiaotie Deng, for their contribution to making this conference a success.
We would also like to thank our sponsors, the ICCM Laboratory of Lanzhou
University, for kindly offering the financial and clerical support that made the
conference possible and enjoyable.

August 2007 Franco Preparata
Qizhi Fang
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Geometric Algorithms for the Constrained 1-D

K-Means Clustering Problems and IMRT
Applications�

Danny Z. Chen, Mark A. Healy, Chao Wang, and Bin Xu��

Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

{chen,mhealy4,cwang1,bxu}@cse.nd.edu

Abstract. In this paper, we present efficient geometric algorithms for
the discrete constrained 1-D K-means clustering problem and extend
our solutions to the continuous version of the problem. One key clus-
tering constraint we consider is that the maximum difference in each
cluster cannot be larger than a given threshold. These constrained 1-D
K-means clustering problems appear in various applications, especially
in intensity-modulated radiation therapy (IMRT). Our algorithms im-
prove the efficiency and accuracy of the heuristic approaches used in
clinical IMRT treatment planning.

Keywords: K-means clustering, staircase-Mongeproperty,matrix search
algorithm, minimum-weight K-link path algorithm, intensity modulated
radiation therapy (IMRT).

1 Introduction

Data clustering is a fundamental problem that arises in many applications (e.g.,
data mining, information retrieval, pattern recognition, biomedical informatics,
and statistics). The main objective of data clustering is to partition a given data
set into clusters (i.e., subsets) based on certain optimization criteria and subject
to certain clustering constraints.

In this paper, we consider the discrete and continuous constrained 1-D K-
means clustering problems and their applications in intensity-modulated radia-
tion therapy (IMRT). The definitions of these two data clustering problems are
given as follows.

The discrete constrained 1-D K-means clustering problem: We are
given a positive bandwidth parameter δ ∈ R, integers K and n with 1 < K < n,
n real numbers x1, x2, . . . , xn with x1 < x2 < · · · < xn, and a positive real-valued
probability function P : {x1, x2, . . . xn} → (0, 1) such that

∑n
i=1 P (xi) = 1. For

any j and l with 0 ≤ l < j ≤ n, we define

μ[l, j] =
∑j

i=l+1 P (xi) ∗ xi
∑j

i=l+1 P (xi)
� This research was supported in part by NSF Grant CCF-0515203.

�� Corresponding author.

F.P. Preparata and Q. Fang (Eds.): FAW 2007, LNCS 4613, pp. 1–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 D.Z. Chen et al.

and

V [l, j] =
{

+∞, when xj − xl+1 > δ
∑j

i=l+1 P (xi)(xi − μ[l, j])2, when xj − xl+1 ≤ δ

We seek a sequence q = (q1, q2, . . . , qK−1) of K − 1 integers with 0 < q1 < q2 <

· · · < qK−1 < n (for convenience, q0
Δ= 0 and qK

Δ= n) such that the total error
E(q) =

∑K
k=1 V [qk−1, qk] is minimized. This discrete constrained problem arises

in IMRT applications [4].
The continuous constrained 1-D K-means clustering problem: We are

given a positive bandwidth parameter δ ∈ R, integers K and n with 1 < K < n,
and a positive real-valued (density) function f : [xb, xe] → [0, 1], where xb and
xe (xb < xe) are real numbers and

∫ xe

xb
f(x)dx = 1. For any values α and β with

xb ≤ α < β ≤ xe, we define

μ̃[α, β] =

∫ β

α f(x) ∗ xdx
∫ β

α
f(x)dx

and

Ṽ [α, β] =
{

+∞, when β − α > δ
∫ β

α
f(x)(x − μ̃[α, β])2dx, when β − α ≤ δ

We seek a sequence θ = (θ1, θ2, . . . , θK−1) of K − 1 real numbers with xb < θ1 <

θ2 < · · · < θK−1 < xe (for convenience, θ0
Δ= xb and θK

Δ= xe), such that the
total error Ẽ(θ) =

∑K
j=1 Ṽ [θj−1, θj ] is minimized.

Note that in the above definitions, V [qj−1, qj ] = +∞ when xqj −xqj−1+1 > δ,
and Ṽ [θj−1, θj ] = +∞ when θj − θj−1 > δ. Thus both the problems actually
have a common constraint, i.e., the maximum difference in any cluster cannot
be greater than the bandwidth parameter δ.

Algorithms for these two problems without the above constraint have been
widely used in many areas such as signal processing, data compression, and infor-
mation theory. Various techniques have been applied to solve the unconstrained
versions, such as quantization [8,17], K-means clustering [9], and computational
geometry [1,2,3,7,16]. However, the constrained versions are also important to
some applications such as IMRT, which motivate our study.

Efficient algorithms for the discrete unconstrained 1-D K-means clustering
problem have been known. Wu [17] modeled the optimal quantization problem
(a variation of the unconstrained version) as a K-link shortest path problem and
gave an O(Kn) time algorithm based on dynamic programming and Monge ma-
trix search techniques [1,2]. Aggarwal et al. [3] showed that the K-link shortest
path problem on directed acyclic graphs (DAG) that satisfy the Monge property
[15,1,2] can be solved in O(n

√
K log n) time by using a refined parametric search

paradigm, and Schieber [16] improved the time bound to O(n2
√

log K log log n). All
these three algorithms exploit the Monge property to find an optimal solution
efficiently. A related work due to Hassin and Tamir [10] formulated a class of
location problems using a general facility location model; their solution for the
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Geometric Algorithms for the Constrained 1-D 3

p-median problem is also based on dynamic programming and matrix search
techniques.

The continuous unconstrained 1-D K-means problem was studied indepen-
dently by Lloyd [11] and Max [13], who gave algorithms based on iterative nu-
merical methods. The convergence speed of their algorithms was improved in
[12]. These algorithms, however, are able to find only a local minimal solution
instead of a global minimum. Wu [17] showed that by discretizing the continu-
ous input function f , a computationally feasible global search algorithm could
be obtained.

The constrained 1-D K-means clustering problems appear in the radiation dose
calculation process of intensity-modulated radiation therapy (IMRT) for cancer
treatment [4,14,18]. In IMRT treatment planning, a radiation dose prescription
(i.e., a dose function) is first computed for a cancer patient by a treatment plan-
ning system. The initially computed dose function is in either a discrete form
(i.e., a piecewise linear function) or a continuous form (e.g., a certain continuous
smooth function), which is often too complicated to be deliverable. Hence, the ini-
tial dose function needs to be processed or simplified into a deliverable form called
intensity profile. The resulting intensity profile should be as close as possible to the
initial dose function both locally and globally to minimize error in the treatment
plan. The constrained 1-D K-means clustering problems model the problem of
computing an intensity profile from an initial dose function [4,14,18], in which the
bandwidth parameter δ specifies the allowed local deviation error and the number
K of clusters indicates the (delivery) complexity of the resulting intensity profile
(e.g., see Section 4 and Figure 2).

Several algorithms for the constrained 1-D K-means clustering problems have
been given in medical literature and used in clinical IMRT planning systems
[4,18]. However, these algorithms use only heuristic methods to determine the
clusters iteratively [4,14,18], and can be trapped in a local minimal (as shown by
our experimental results in Section 5). Also, no theoretical analysis was given for
their convergence speed. The clustering constraint defined at the beginning of
this section is often used [4]. But, in certain medical settings, another clustering
constraint (e.g., in [18]; see Section 2.5) that is quite similar to yet slightly more
restricted than the constraint defined in this section is also used. As we will
show later, such seemingly slight constraint variations can have quite different
computational and algorithmic implications.

Our results in this paper are summarized as follows.

1. We present efficient geometric algorithms for computing optimal solutions to
the discrete constrained 1-D K-means problem that is defined in this section.
Depending on the relative values of n and K, our algorithms run in O(Kn)
or O(n2

√
log K log log n) time, by exploiting the Monge property [15,1,2,16,17]

of the problem (see Section 2).
2. We also consider a similar yet slightly more restricted clustering constraint

[18] (to be defined and discussed in Section 2.5), and show that the Monge
property does not hold for this constraint variation. Our algorithm for this
discrete constrained problem version takes O(K(n + |E′|)) time, where |E′|
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4 D.Z. Chen et al.

is the number of edges in a graph that models the problem (|E′| ≤ n2, but
in practice |E′| can be much smaller than O(n2)).

3. We extend our solutions to the continuous constrained 1-D K-means problem,
by transforming the continuous case to the discrete case (see Section 3).

4. We show that our constrained 1-D K-means algorithms are useful in IMRT
applications (see Section 4), and give some experimental results on compar-
ing our solutions with those computed by the heuristic methods in medical
literature [4,14,18] (see Section 5).

2 Algorithms for the Discrete Constrained 1-D K-Means
Problem

This section presents our algorithms for the discrete constrained 1-D K-means
clustering problem.

2.1 Computing the Minimum Number K of Clusters

The number K of clusters can be an input value. However, in some applications
such as IMRT, K needs to be as small as possible and thus needs to be computed.
Wu et al. [18] gave a greedy algorithm for finding the minimum cluster number
K, as follows. The input values x1, x2, . . . , xn are scanned in ascending order
and partitioned into K groups:

(x1, . . . , xq1), (xq1+1, . . . , xq2), . . . , (xqK−1+1, . . . , xn)

such that for any k with 1 ≤ k ≤ K, xqk
−xqk−1+1 ≤ δ and xqk+1 −xqk−1+1 > δ.

Clearly, K can be computed in O(n) time.

2.2 Reformulation of the Discrete Constrained 1-D K-Means
Problem

In this section, we model the discrete constrained 1-D K-means clustering prob-
lem as a K-link shortest path problem on a directed acyclic graph (DAG)
G = (U, E), which is defined as follows (see Figure 1). The vertex set U =
{u0, u1, u2, . . . , un}. For any two vertices ul and uj (l < j), we put an edge in G
from ul to uj with a weight V [l, j].

Clearly, G is a complete DAG with edge weights. Any K-link path from u0
to un in G, say p = u0 → uq1 → uq2 → · · · → uqK−1 → un, corresponds to a
feasible solution q = (q1, q2, . . . , qK−1) for the discrete constrained 1-D K-means
clustering problem, and vice versa. For any path in G, define its weight as the
sum of the weights of all its edges. It is easy to see that an optimal solution
for the discrete constrained 1-D K-means clustering problem corresponds to a
shortest K-link path from u0 to un in the DAG G.

The DAG G thus defined has O(n) vertices and O(n2) edges. In Section 2.3, we
will show that the weight of any edge in G can be computed in O(1) time after an
O(n) time preprocess. Hence, the graph G can be represented implicitly, that is,
after the O(n) time preprocess, any vertex and edge of G can be obtained in O(1)
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0 u1 u2 u3 un
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u

Fig. 1. A weighted, complete directed acyclic graph (DAG)

time. Thus, a K-link shortest path in G can be computed in O(K(|U | + |E|)) =
O(Kn2) time by using the standard dynamic programming approach. In Section
2.4, we will show that by exploiting the underlying geometric properties of the
DAG G, a K-link shortest path in G can be computed in O(n2

√
log K log log n) or

O(Kn) time.

2.3 Computing the Weights of the Edges in G

In this section, we show that for any l and j (l < j), the weight of the edge in
G from ul to uj can be computed in O(1) time after an O(n) time preprocess.
It suffices to consider the case when xj − xl+1 ≤ δ. In this case, we have

V [l, j] =
∑j

i=l+1 P (xi)(xi − μ[l, j])2

=
∑j

i=l+1 P (xi)x2
i − 2

∑j
i=l+1 P (xi) ∗ xi ∗ μ[l, j] +

∑j
i=l+1 P (xi)(μ[l, j])2

=
∑j

i=l+1 P (xi)x2
i − (

�j
i=l+1 P (xi)xi)2
�j

i=l+1 P (xi)

Therefore, if we precompute all prefix sums of
∑g

i=1 P (xi),
∑g

i=1 P (xi)xi, and∑g
i=1 P (xi)x2

i , g = 1, 2, . . . , n, which can be easily done in O(n) time, then we
can compute any V [l, j] in O(1) time.

2.4 The Staircase-Monge Property of the Problem

This section shows that the discrete constrained 1-D K-means clustering problem
satisfies the staircase-Monge property [2].
Lemma 1. (1a) If V [l, j] = +∞, then V [l, j′] = +∞ for any j′ > j and
V [l′, j] = +∞ for any l′ < l.
(1b) For any 0 < l + 1 < j < n, if the four entries V [l, j], V [l + 1, j], V [l, j + 1],
and V [l+1, j+1] are all finite, then V [l, j]+V [l+1, j+1] ≤ V [l+1, j]+V [l, j+1].

Proof. (1a) If V [l, j] = +∞, then xj − xl+1 > δ. Since the sequence of x =
(x1, x2, . . . , xn) is in ascending order, for any j′ > j, we have xj′ − xl+1 >
xj − xl+1 > δ. Hence V [l, j′] = +∞. We can similarly argue that for any l′ < l,
V [l′, j] = +∞ holds.
(1b) Fix l and j. We can view V [l + c, j + d]’s and μ[l + c, j + d]’s (c = 0, 1
and d = 0, 1) as multi-variable functions of xl+1, xl+2, . . . , xj+1 and P (xl+1),
P (xl+2), . . ., P (xj+1). Let W = V [i + 1, j]+ V [i, j +1] − V [i, j] −V [i + 1, j + 1].
It is sufficient to show W ≥ 0.
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When P (xj+1) = 0, we have μ[i, j] = μ[i, j +1] and μ[i+1, j] = μ[i+1, j +1];
further, V [i, j] = V [i, j + 1] and V [i + 1, j] = V [i + 1, j + 1]. Thus W = 0 when
P (xj+1) = 0.

To show W ≥ 0, it suffices to show that ∂W
∂P (xj+1) ≥ 0. Since

V [l, j + 1] =
j+1∑

i=l+1

P (xi)(xi − μ[l, j + 1])2

we have

∂V [l,j+1]
∂P (xj+1) = (xj+1 − μ[l, j + 1])2 +

∑j+1
i=l+1 2P (xi)(xi − μ[l, j + 1])(−∂μ[l,j+1]

∂P (xj)
)

= (xj+1 − μ[l, j + 1])2 + (−2∂μ[l,j+1]
∂P (xj)

)
∑j+1

i=l+1 P (xi)(xi − μ[l, j + 1])

= (xj+1 − μ[l, j + 1])2 + (−2∂μ[l,j+1]
∂P (xj)

) · 0
= (xj+1 − μ[l, j + 1])2

Similarly, ∂V [l+1,j+1]
∂P (xj+1) = (xj+1 − μ[l + 1, j + 1])2. Hence

∂W
∂P (xj+1) = ∂V [l,j+1]

∂P (xj+1) − ∂V [l+1,j+1]
∂P (xj+1)

= (xj+1 − μ[l, j + 1])2 − (xj+1 − μ[l + 1, j + 1])2

Observing that μ[l, j + 1] ≤ μ[l + 1, j + 1] ≤ xj+1, we have ∂W
∂P (xj+1) ≥ 0. �

Lemma 1 implies that the (n + 1) × (n + 1) matrix V = (V [l, j]) is a staircase-
Monge matrix [2]. (For convenience, an entry of V is filled with +∞ if the corre-
sponding V [l, j] is undefined.) Using the results of Aggarwal et al. [1], Schieber
[16], and Aggarwal and Park [2], it is easy to show that the K-link shortest path
problem on G can be solved in O(n2

√
log K log log n) time. Of course, Wu’s algo-

rithm [17] based on dynamic programming and Monge matrix search can also
be applied to directly solve the discrete constrained 1-D K-means clustering
problem in O(Kn) time. Thus, depending on the relative values of n and K, we
can choose a more efficient algorithm for the discrete constrained 1-D K-means
clustering problem.

2.5 A Slightly Stronger Clustering Constraint

Up to this point, the clustering constraint we have used is that the maximum
distance between any two input elements in the same cluster cannot be more
than a given threshold value δ [4], which we call the weak constraint. A slightly
stronger clustering constraint also used in IMRT treatment planning [18] requires
that the maximum distance between the “centroid” of each cluster C and any
input element in C be no more than δ/2. Since in some IMRT applications, the
“centroid” of a cluster C is used to approximate each input element in C (i.e.,
each element in C is “replaced” by its centroid), this constraint requires that
the approximation error between the centroid and any element in C cannot be
larger than δ/2. We call this constraint the strong constraint. Note that if a
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cluster satisfies the strong constraint, then it also satisfies the weak constraint;
but, the other way around is not true.

To reflect the strong clustering constraint, the definition of the discrete con-
strained 1-D K-means clustering problem (defined in Section 1) needs a slight
change, i.e., we replace V [l, j] with

V ′[l, j] =

⎧
⎪⎪⎨

⎪⎪⎩

+∞, when xj − μ[l, j] > δ/2 or
μ[l, j] − xl+1 > δ/2

∑j
i=l+1 P (xi)(xi − μ[l, j])2, when xj − μ[l, j] ≤ δ/2 and

μ[l, j] − xl+1 ≤ δ/2

It is easy to see that in the same way as in Section 2.2, we can reformulate
this constrained clustering problem as computing a K-link shortest path in a
DAG G′, except that the weights of the edges in this DAG G′ are somewhat
different. Therefore, the discrete constrained 1-D K-means clustering problem
under this slightly stronger constraint can be solved in O(Kn2) time (using
dynamic programming).

It would be interesting to check if the new DAG G′ satisfies the staircase-
Monge property as the weak constraint case did. Unfortunately, the answer is
no. Below we give a counterexample. Let a value ε be much smaller than δ

n , and
consider the following data sequence x of n items such that n is an even number:
ε, 2ε, . . . , n

2 ε, δ − n
2 ε, δ − (n

2 − 1)ε, . . . , δ − ε. For 0 ≤ l < n
2 , it is easy to show that

the entry V ′[l, j] is finite if and only if l < j ≤ n
2 or j = n − l. Thus, the finite

entries in a row of V ′ no longer guarantee to form a consecutive interval (i.e.,
there can be entries of +∞ between finite entries in a row). We conclude that
V ′ (and further, the DAG G′) is neither staircase-Monge nor Monge.

Therefore, a seemingly small change in the constraint causes significant dif-
ferences in the algorithm and its running time. While the case with the weak
constraint can be solved in O(Kn) or O(n2

√
log K log log n) time, the case with the

strong constraint takes O(Kn2) time in the worst case.
It should be pointed out that for some situations (to be discussed in detail

below), it is possible to improve the running time of the case with the strong
constraint. The observation is that if V ′[l, j] is finite, then V [l, j] must also be
finite. (Recall that we are using a stronger clustering constraint.) Denote by FV

(resp., FV ′) the number of finite entries in V (resp., V ′). Since V is staircase-
Monge, it is easy to determine all its finite entries (using an implicit interval
representation) in O(n) time. Note that when using the standard dynamic pro-
gramming technique to compute a K-link shortest path in G′, we need to visit
only those edges of G′ with finite weights, each of which corresponds one-to-one
to a finite entry in V ′. It is then clear that we can compute a K-link shortest
path in G′ in O(K(n + FV )) time (with O(n) space), improving the worst case
O(Kn2) time bound when FV = o(n2). Further, if FV ′ = o(FV ), it will be ben-
eficial to first record all finite entries of V ′ after a scan of the DAG G′; then the
algorithm takes O(FV + K(n + FV ′)) time and O(n + FV ′) space. In practice,
FV ′ can be much smaller than O(n2), specially in the IMRT clustering settings
(e.g., see Section 4.1).
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3 Extension to the Continuous Constrained 1-D
K-Means Problem

In this section, we briefly discuss how to solve the continuous constrained 1-D K-
means clustering problem. Our key idea is to transform the continuous constrained
1-D K-means problem to the discrete problem solved in Section 2. We first parti-
tion the domain [xb, xe] of f(x) into n intervals of length L each (with L = (xe −
xb)/n), and use the middle point xi of the i-th interval as the representative point
of that interval [17], thus producing a sequence of n values x1, x2, . . . , xn. The
weight P (xi) of the value xi, i = 1, 2, . . . , n, is defined as P (xi) =

∫ xi+ε

xi−ε
f(x)dx,

with ε = L/2. We call P (xi) the “weight” instead of the probability since P (xi)
may not be in [0, 1] and

∑n
i=1 P (xi) may not be equal to 1 (e.g., when f(x) is not

a density function). We can certainly normalize P (xi) to a probability, and then
apply our algorithm for the discrete constrained 1-D K-means clustering problem
to the problem instance on δ, the xi’s, and the P (xi)’s. (In practice, the normal-
ization step can be omitted since it does not affect the final solution.) It is easy to
show that in this way, we can approximate the optimal solution for the continu-
ous constrained 1-D K-means clustering problem within any desired precision by
choosing a sufficiently large n.

4 IMRT Applications

In this section, we discuss the applications of our clustering algorithms in IMRT.
We consider two approaches: the discrete and continuous approaches. In the dis-
crete approach, we apply the algorithms given in Section 2 to the clustering
process in IMRT. In the continuous approach, we consider simplifying the con-
tinuous dose function curves into (deliverable) intensity profiles, and transform
the continuous case to the discrete constrained 1-D K-means problem.

4.1 The Discrete Approach

Figure 2(a) shows a dose function represented by the rectilinear curve of beam
intensity vs. position. The curve consists of vertical and horizontal line segments
specified by a sequence of intensity values x1, x2, . . . , xN . These intensity values
are defined on the corresponding coordinate values of the position axis. Suppose
this dose function is not deliverable, and thus these N intensity values need to
be grouped into K clusters for the smallest possible number K, such that the
maximum difference between any two intensity values in each cluster is no bigger
than a given bandwidth parameter δ and the total sum of variances of the K
clusters is minimized. The horizontal strips in Figure 2(b) represent the K = 4
clusters, each containing its mean intensity value μi. The resulting clusters are
actually used to specify an intensity profile as shown in Figure 2(c). The intensity
profile thus obtained is deliverable and is further converted into a set of delivery
operations by a radiation treatment planning system.

One possible way to determine the value of the bandwidth parameter δ is
as follows [18]. First, the maximum deviation tolerance emax is defined as the
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Fig. 2. Illustrating an IMRT application of the discrete constrained 1-D K-means
clustering algorithms: (a) A rectilinear input dose function specified by a sequence of
discrete intensity values x1, x2, . . . , xn; (b) the four clusters of the intensity value
sequence (indicated by the four strips); (c) the resulting intensity profile

product of a user-specified percentage error tolerance (ET ) and the maximum
intensity value φmax = maxN

i=1{xi}, i.e., emax = ET × φmax. Then δ is defined
as 2 ∗ emax. Of course, δ can also be a user-specified input value.

After we perform a sorting plus a “group by value” operation on the sequence
x = (x1, x2, . . . , xN ), the sequence x becomes a sequence of n (n ≤ N) distinct
intensity values, say χ1, χ2, . . . , χn. For each i (1 ≤ i ≤ n), P (χi) is defined as
the ratio of the number oc(χi) of occurrences of χi in x over N , i.e., P (χi) =
oc(χi)/N . We then directly apply the clustering algorithms given in Section 2 to
the χi’s and P (χi)’s for the above clustering process. Once the clustering result
is given, the corresponding intensity profile can be easily produced.

Comparing to the known heuristic clustering algorithms in medical literature
[4,14,18], our clustering algorithms are very efficient and guarantee to find a
globally optimal solution instead of a locally minimal solution.

4.2 The Continuous Approach

In Section 4.1, a sequence of discrete intensity values x1, x2, . . . , xn is used to
describe approximately the curve of a dose function (i.e., as a piecewise linear
function). However, for a better accuracy, the given dose function can also be a
continuous and even smooth function x = g(a) defined on an interval [xb, xe] on
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the position axis. Since such a dose function g(a) is in general not deliverable, we
must convert it into a deliverable intensity profile subject to a specified deviation
error tolerance δ, such that the complexity of the resulting intensity profile is
small and the total sum of deviation error is minimized. This can be solved as a
continuous constrained 1-D K-means clustering problem.

We illustrate our idea by showing how to handle a unimodal dose function
x = g(a) (see Figure 3(a)). The domain of g(a) on the position axis can be
partitioned into two intervals [a1, a3] and [a3, a5], on each of which the curve
of g(a) is monotone. Suppose in the clustering process, the range of g(a) on
the x-axis (for the beam intensity) is partitioned into two intervals [x1, x2] and
[x2, x3], and their corresponding mean values are μ1 and μ2, respectively (see
Figure 3(b)). Then clearly, the total mean-square error E incurred by clustering
the intensities of the dose function g(a) is:

E =
∫ a2

a1

(g(a) − μ1)2da +
∫ a4

a2

(g(a) − μ2)2da +
∫ a5

a4

(g(a) − μ1)2da.

The clustering process aims to minimize E for a specified bandwidth para-
meter δ and a given cluster number (2 in this case). Below we show that this is
actually a continuous constrained 1-D K-means clustering problem.

Intensity

a

x3

1 3 5

1

a a

x

Position

Beam
Intensity

μ

x

x

x

Position
a

3

1 2 3 4 5

2

1

a a a a

2

1

μ

Beam

(a) (b)

Fig. 3. Illustrating an IMRT application of the continuous constrained 1-D K-means
clustering algorithms: (a) The curve of an input continuous and smooth dose function;
(b) the clustering result (the mean values of the two clusters are indicated by the
dash-dot lines) and the final intensity profile (the heavy solid rectilinear curve)

We write g(a) as

g(a) =
{

g1(a), when a1 ≤ a ≤ a3
g2(a), when a3 ≤ a ≤ a5

Since g1 and g2 are both monotone, g−1
1 (x) and g−1

2 (x) exist. Define f(x) =
(g−1

1 (x))′−(g−1
2 (x))′. (For the moment, we assume that both g−1

1 (x) and g−1
2 (x)

are differentiable.) Then we have
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E =
∫ a2

a1
(g(a) − μ1)2da +

∫ a4

a2
(g(a) − μ2)2da +

∫ a5

a4
(g(a) − μ1)2da

=
∫ a2

a1
(g1(a) − μ1)2da +

∫ a3

a2
(g1(a) − μ2)2da +

∫ a4

a3
(g2(a) − μ2)2da

+
∫ a5

a4
(g2(a) − μ1)2da

=
∫ x2

x1
(x − μ1)2(g−1

1 (x))′dx +
∫ x3

x2
(x − μ2)2(g−1

1 (x))′dx

+
∫ x2

x3
(x − μ2)2(g−1

2 (x))′dx +
∫ x1

x2
(x − μ1)2(g−1

2 (x))′dx

=
∫ x2

x1
(x − μ1)2(g−1

1 (x) − g−1
2 (x))′dx+

∫ x3

x2
(x − μ2)2(g−1

1 (x) − g−1
2 (x))′dx

=
∫ x2

x1
(x − μ1)2f(x)dx+

∫ x3

x2
(x − μ2)2f(x)dx

Further, it is not difficult to verify that to minimize E, μ1 and μ2 need to satisfy

μ1 =
� x2

x1
f(x)∗xdx

� x2
x1

f(x)dx
and μ2 =

� x3
x2

f(x)∗xdx
� x3

x2
f(x)dx

The above expressions of the mean-square error E and μ show the close re-
lation between the continuous constrained clustering problem in IMRT dose
calculation and the continuous constrained 1-D K-means clustering problem.
The clustering result and the final intensity profile for this example are given in
Figure 3(b).

If the given dose function g(a) has more than one peak, then the correspond-
ing function f(x) will be defined as f(x) = −(L(x))′, where L(x) is Lebesque
measure [6] of the set {a | g(a) ≥ x}. Geometrically, for any t, L(t) is the total
“length” of the intersection of the horizontal line x = t with the region under
the dose function curve x = g(a). Clearly, f(x) ≥ 0, and we can always normal-
ize f(x) to be a dense function such that

∫ xe

xb
f(x)dx = 1 holds, where xb and

xe are the minimum and maximum intensities on the curve g, respectively. In
practice, the normalization step is usually omitted since it does not affect the
final clustering result.

5 Implementation and Experiments

To study the quality and performance of our new constrained 1-D K-means clus-
tering algorithms with respect to clinical IMRT applications, we implemented
our discrete algorithms using the C programming language on Linux and UNIX
systems. For the purpose of comparison, we also implemented the discrete con-
strained 1-D K-means clustering algorithm by Wu et al. [18] which is based
on heuristic methods. We used clinical data from the Department of Radiation
Oncology, the University of Maryland School of Medicine in order to generate
simulations for clustering. We used the clinical intensity fields thus obtained,
and added random values to the positive entries in these intensity fields to cre-
ate simulated unclustered intensity fields for our experiments.

We conducted an extensive comparison study with the algorithm in [18]. The
mean-square errors for generating 63 clustered intensity fields using our algo-
rithms and the algorithm in [18] were calculated for a percentage range of the
emax value (note that the bandwidth parameter δ = 2 ∗ emax). Table 1 shows
some of the comparison results. For each of our test cases, our algorithm always
provides a lower mean-square error than the algorithm in [18]. For the range

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



12 D.Z. Chen et al.

Table 1. Comparisons of the mean-square errors for clustering 63 intensity fields with
the emax values ranging from 1% to 5%

emax Wu et al.’s algorithm [18] Our algorithm Improvement

1% 99.834 91.102 8.7%
2% 464.088 422.743 8.9%
3% 1084.847 1009.205 7.0%
4% 1882.953 1747.737 7.2%
5% 2833.705 2621.713 7.5%

Total: 6365.427 5892.500 7.4%

of 1% – 5% of the emax values, our algorithm shows an average improvement
of about 7.4% over the algorithm in [18]. While our algorithm always produces
an optimal clustering solution, it is important to note that the improvement
over the algorithm in [18] varies in terms of the given data. For individual in-
stances in our testing, while the minimum improvement was 0.0%, the maximum
improvement was 37.7%.

Regarding the execution time of our discrete algorithms, our experiments
actually showed that our algorithm for the strong constraint case did not execute
as fast as the heuristic algorithm in [18]. However, our algorithm still executes
very fast, running less than one second in all tested cases.
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Abstract. The performance of a DNA microarray is dependent on the
quality of the probes it uses. A good probe is uniquely associated with
a particular sequence that distinguishes it from other sequences. Most
existing algorithms to solve the probe selection problem use the common
approach that directly filters out “bad” probes or selects “good” probes
of each gene. However, this approach requires a very long running time
for large genomes. We propose a novel approach that screens out a “bad”
gene(not probe) set for each gene before filtering out bad probes. We also
provide a O(1/4qN2)time preprocessing algorithm for this purpose using
q-gram for a length-N genome, guaranteeing more than 95% sensitivity.
The screened bad gene sets can be used as inputs to other probe selection
algorithms in order to select the specific probes of each gene.

Keywords: DNA microarray, probe selection algorithm, preprocessing.

1 Introduction

The DNA microarray is a widely used tool to perform experiments rapidly on a
large scale. It is able to monitor the whole genome on a single chip, so that re-
searchers can obtain a better picture of the interactions of various genes simulta-
neously. The range of application of microarrays extends from gene discovery and
mapping to gene regulation studies, diagnosis, drug discovery, and toxicology[1].

The DNA microarray consists of a solid surface, usually a microscope slide, onto
which DNA molecules(called probes) have been chemically bonded. And a probe
is a short piece of single-stranded DNA complementary to the target gene whose
expression is measured on the microarray by that probe[13]. The performance of a
microarray is fairly dependent on the quality of the selected probes. Good probes
should have similar reaction temperature (homogeneity), should be totally spe-
cific to their respective targets to avoid any cross-hybridization (specificity), and
should not form stable secondary structures that may interfere with the probes
by forming heteroduplexes during hybridization (sensitivity) [2, 6, 13].

� This work was supported by the Korea Research Foundation Grant funded by the
Korean Government(MOEHRD)(KRF-2005-041-D00747).
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Among these properties, the homogeneity and sensitivity of a probe can be
determined in linear time[13]. However, the specificity step is computationally
expensive and takes up the most time in the probe selection process. The speci-
ficity identifies probes that are unique to each gene in the genome. This condition
minimizes the cross-hybridization of the probes with other gene sequences. The
brute force approach for specificity checking scans through the whole length-N
genome for every length-m probe and determines if the distances between them
exceed some pre-specified limit under some predefined distance measurement.
Such a process requires a time of O

(
mN2

)
if the Hamming distance[3] is used

as the specificity measurement. The Hamming distance is the number of posi-
tions at which the characters at corresponding positions of the two strings differ.
If a probe has a Hamming distance greater than some constant, the probe is said
to be sufficiently specific.

In the mean time, there have been many attempts to find efficient algorithms
which can select specific probe sets for each gene in a large genome. Existing al-
gorithms usually select probes using the criteria of homogeneity, sensitivity and
specificity proposed by Lockhart et al[6]. Li and Stormo[5] proposed a heuristic
algorithm to solve the probe selection problem. To improve its time efficiency,
their algorithm uses advanced data structures such as suffix array and land-
scape. However, this algorithm is still not fast enough for the computation of
large genome sets. By considering the thermodynamic property, Kaderali and
Schliep[4] attempted to design a probe set by heuristic dynamic programming.
Although this solution based on the Nearest Neighbor Model[11] has higher ac-
curacy, since it considers the thermodynamic property, their algorithm is very
slow and is unsuitable for large genomes. Rahmann[9, 10] presented a fast al-
gorithm that is practical for designing short probes of up to 30 nucleotides. His
algorithm approximates the unspecificity of a probe by computing its longest
common contiguous substring. This algorithm allows the selection of probes for
large genomes like Neurospora crassa in 4 hours. However, his approach can only
design short probes. Furthermore, the approximation used is not very accurate
and some good probes may be missed out[13]. Sung and Lee[13] presented a
filtering algorithm based on the Pigeon Hole Principle to select probes, in which
several hashing techniques were used to reduce the search space for the probes[2].
The Hamming distance is used as the specificity measure of the probes. By us-
ing the Pigeon Hole Principle, they avoided redundant comparisons for probes
and greatly improved the time efficiency. Recently, Gasieniec et al. [2] presented
another algorithm. Their algorithm selects just a small probe set instead of all
possible probes using randomization.

These algorithms share a common approach that selects “good” probes or
eliminates “bad” probes for each gene by directly comparing the probe candi-
dates with other gene sequences. The probe candidates are every pre-defined
length substring of a gene. If a candidate does not satisfy the condition of the
specificity measurement, it is considered to be a “bad” probe and so is elimi-
nated. This process causes the probe selection algorithm to be inefficient and
makes it unsuitable for large genomes. However, we observed that there are a
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very small number of other genes(far less than 1%) which actually cause the
probe candidates of a gene to be “bad” probes. Bad probes are probe candidates
that we want to eliminate. So, first, if we can screen out the bad genes for each
gene rapidly using a preprocessing procedure before filtering out the bad probes,
the running time of the probe selection process will be greatly reduced. We only
need to compare a gene with the screened bad genes to select the good probes
using any of the previously proposed algorithms.

In this paper, we propose a new approach to solve this problem efficiently
and provide a O

(
1/4qN2

)
time preprocessing algorithm for screening out gene

sets which other probe selection algorithms can use as an input to select specific
probes for each gene. The average size of a screened gene set for each gene is less
than 1% of other genes which need to be compared to filter out bad probes in
previously common approach. And our algorithm has a sensitivity of more than
95% to the bad genes. The basic idea behind the proposed algorithm is that it
first finds a small number of high matching regions between two genes by q-gram
counting and verifies these regions. If one of these regions satisfies our pre-defined
condition, the two genes are considered to have a “bad” relation, and two genes
having a bad relation must be subjected to further processing to eliminate the
bad probes. Our algorithm can be used as a preprocessing procedure by other
probe selection algorithms.

The remainder of this paper is organized as follows. In the next section, we
review the existing methods of dealing with the probe selection problem and
discuss some of their properties. In Section 3, we give the necessary definitions
and notations for our discussion. We also prove some properties of these methods.
In Sections 4 and 5, we present our new approach, test it on several real datasets
and compare its performance to that of the existing algorithms. We conclude in
Section 6 with a discussion and future research directions.

2 Definitions and Lemmas

In this section, we define some problems and describe our observations. Our
algorithm uses the Hamming distance as the similarity measurement. The probe
selection problem is defined as follows.

Definition 1 (Probe Selection Problem). Given a set of genes G =
{g1, g2, g3, ..., gn} and a parameter m which specifies the length of the probes,
the probe selection problem finds, for every gene gi, all length–m probes s which
satisfy HD(s, t) ≥ k for all t and some constant k.

k is a pre-specified threshold under the assumption of the Hamming distance.
t is a length-m substring of gene gj(1 ≤ j ≤ n, j �= i). The Hamming distance
HD(s, t) is the number of positions at which the characters at corresponding
positions of the two strings differ. If the Hamming distances between s and all
ts are greater than the threshold k, the probe p is said to be a “good” probe, or
otherwise a “bad” probe.
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Definition 2 (Good Relations and Bad Relations). If two genes gi and
gj have no s and t which satisfy HD(s, t) < k, we say that they have a “good
relation”. Otherwise, we say they have a “bad relation”.

Lemma 1. Let mHD(gi, gj) be the minimum HD(s, t) of two genes gi and gj.
If mHD is no less than the threshold k, the two genes gi and gj have a good
relation.

Proof. If mHD is not less than the threshold k, then every other HD(s, t) of
the two genes is at least k, because mHD is the smallest HD. There are no bad
genes between them. Therefore, they have a good relation by Definition 2. ��

Corollary 1. If two genes have a bad relation, the number of match characters
of the maximally matching length-m substring pairs of the two genes is greater
than m − k.

Proof. If two genes have a bad relation, there must be a pair of probes having a
match count greater than m − k. Therefore, if the HD of a pair of probes s and
t is mHD, the match count of s and t must be greater than m − k. ��

Lemma 1 and Corollary 1 provide the basis of an approach which can be used
to solve the probe selection problem efficiently. We concisely describe the overall
scheme as follows.

1) Screen out the bad relation gene set for each gene using a preprocessing
procedure.

2) Eliminate the bad probes of each gene against the corresponding bad gene
set obtained from 1) using any probe selection algorithm.

This approach requires a few conditions to be met for it to succeed. In effect,
the size of the bad gene set for each gene must be small and the preprocess-
ing procedure should be efficient and accurate. If the number of bad genes for
each gene is very large, there is no need to use the preprocessing procedure,
because the second phase is almost as same as the original problem. Also, if
the preprocessing procedure is not efficient or accurate, it will itself constitute
an overhead and deteriorate the performance of the DNA microarray. However,
we observed that there is a very small number of bad genes for each gene. The
following lemma confirms this observation.

Lemma 2. If 4 nucleotides are evenly distributed in two genes gi and gj, then
the probability of two genes having a bad relation is given by

1
4m

k−1∑

a=0

(
m
a

)

3a(|gi| − m + 1)(|gj | − m + 1)

where m is the probe size and k is a threshold.

Proof. By Definition 2, two genes having a bad relation must have at least a
pair of length-m subsequences which satisfy HD < k. Let s be a length-m
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subsequence in gi. For consecutive m-postions in gj , there can be 4m DNA sub-
sequences. Among them, we count the number of cases to which the HD of s is
less than k. Because there are 3 different nucleotides for each mismatch position,

the number of cases is
k−1∑

a=0

(
m
a

)

3a. And the total number of subsequence pairs

of two genes is (|gi|−m+1)(|gj |−m+1). Therefore, the above formula holds. ��

From Lemma 2, we can ascertain that the probability of two genes having a bad
relation is very low. This means there is a very small number of bad genes for
each gene. So if we can find an efficient and accurate preprocessing algorithm
to screen the bad genes for each gene, the proposed approach will be successful
in solving the probe selection problem for a large genome such as the human
genome efficiently.

From Lemma 1 and Corollary 1 we can define a useful problem to derive a
preprocessing algorithm.

Definition 3 (Maximum matching substring finding problem). Given
two genes gi and gj and a parameter m which specifies the length of the probes,
the MMSF problem finds length-m substrings s and t for each gene which satisfy

arg min
s∈gi,t∈gj

HD(s, t).

If the number of match characters of the two probe candidates s and t is greater
than m − k, then the two genes gi and gj have a bad relation or otherwise they
have a good relation. We propose a simple and efficient preprocessing algorithm
which searches the regions assumed to have such pairs of s and t and determines
if the two genes have a bad relation by q-gram counting.

3 A New Preprocessing Approach

This section presents a preprocessing algorithm used to screen out bad relation
gene sets for each gene. The main idea behind our algorithm is to make use of
q-gram counting to locate those regions which are expected to contain probe
candidate pairs having a Hamming distance of mHD between two genes. If
a length-m substring pair of two genes has many matching q-grams, it has a
high probability of having a Hamming distance of mHD between the two genes.
Therefore, for the purpose of finding the maximally matching length-m substring
pairs, we focus only on those regions with more than a certain threshold number
of q-grams between the two genes. Figure 1 presents the data structures needed
to find such regions. Initially our algorithm converts every gene sequence to
corresponding bit vectors and builds a list of locations of q-grams. It also builds
|gq| + |gt| − 2q + 1 circular queues of size m to count the matching q-grams.

3.1 Algorithm

After building the data structures, our algorithm starts by finding regions which
have more than a certain threshold number of q-grams between the query gene
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Fig. 1. Data structures

gq and target gene gt. Our algorithm inserts the position of the q-gram of the
target gene obtained from a location list into the corresponding queue at the
position following the consecutive q-grams(=hi) of the query gene and increases
the q-gram counter of the corresponding queue by one. Subsequently, it needs to
adjust the queue such that only those q-grams whose distance from the newly
inserted q-gram is not more than m remain in it. The q-gram counter also needs
to be updated in accordance with the queue updating procedure. Also, when
the counter exceeds the pre-specified threshold w, the verification procedure is
performed. The pseudo code of our algorithm is described below. It runs on each
gene against every other gene.

3.2 Verification

The verification procedure determines whether a pair of genes has a bad relation.
After counting the number of match characters of the region with more than
w q-grams, we compute the match ratio by dividing the number of matches by
the length of the region. If the match ratio of the region is greater than the pre-
determined threshold MT , these two genes are classified as having a bad relation
and the algorithm stops. When our algorithm terminates its iterations without
successful verification, the two genes are classified as having a good relation.
The region of verification is shown in Figure 2. We performed many experiments
with different values of the parameters(w: 6, 5, 4, 3, 2 and MT : 0.4, 0.5, 0.6).
The q-gram threshold w has a trade-off between the number of regions which
need verification and the sensitivity of the algorithm. However, we observed that
although w is small, the number of regions is very low and, therefore, we can
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Algorithm BadGeneJudgementbyQ-gramCounting
Input: hash sequence Hq of query gq

location list Tt of target gt

verification condition w
match ratio threshold MT

Output: Bad or Good relation between gq and gt

Begin
For each q-gram hi ∈ Hq

For all location j (whose index equals to hi )of Tt

Insert(Queuei−j, j)
Qgram Counteri−j ← Qgram Counteri−j + 1
For j – fronti−j > m //adjust queue

Delete(Queuei−j)
Qgram Counteri−j ← Qgram Counteri−j - 1
if Qgram Counti−j > w

if Verify(i, fronti−j , reari−j) = 1
return bad // bad relation

return good // good relation
End

Function Verify(i, fronti−j , reari−j )
Begin

determine the region which needed verity using arguments
mr ← compute the ratio of match characters of this region
if mr > MT

return 1
return 0

End

use a small value of w to increase the sensitivity. We show the average number
of these regions between two genes of S. cerevisiae in Table 1. To speed up and
additionally increase the sensitivity of our algorithm, we use the matching ratio
of the verification region rather than checking the exact Hamming Distance of
every probe pair in the region.

3.3 Complexity

The time required to build the data structures is linearly proportional to their
size. With the assumption that the genome sequence is random, the expected
number of matching q-grams of the target gene to a q-gram of the query gene is
1/4q(|g| − q + 1) and each q-gram is inserted into the corresponding queue only
once. If the total length of all of the genes is N , the complexity of the algorithm
is O(1/4qN2). However, this does not include the running time spent verifying
the regions. The running time of verification is computed as follows. The length
of a region cannot be more than 3m and we also use the hash table technique
proposed by [13] to speed up the match counting of the region. The additional
running time is O(av(q, w)n23m/α), where av(q, w) is the average value listed
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Fig. 2. Region to be verified

Table 1. The number of regions needing to be verified (S. cerevisiae with MT 0.6)

8-gram 7-gram 6-gram 5-gram
Total Total Total Total

Average Average Average Average

w = 4
375,950 1,172,147 4,474,925 24,408,177

0.01 0.05 0.22 1.21

w = 3
3,629,061 12,894,386 50,664,722 254,610,930

0.18 0.64 2.51 12.65

w = 2
43,667,018 158,522,470 607,207,038 2,661,324,557

2.17 7.88 30.18 132.31

in Table 1, n is the number of genes and α is the hash size of the hash table(we
use α = 10). As shown in Table 1, the number of regions requiring verification is
very small. Therefore, their effect on the complexity is low enough to be ignored.

4 Analysis of Experimental Results

The proposed algorithm is implemented in C language and tested on a single
32-bit system (Xeon 2.45Ghz with 1GB RAM). The genomes involved in the
experiments are listed in table 2. We exclude the result of the human genome
because it takes an extremely long time to obtain the exact bad relation data
of human genes. In the case of N. crassa, it takes a few weeks. The experiments
were performed using a probe length m = 50 and mismatch threshold k = 12
following the findings of Li and Stormo. They used the fact that, in general,
the hybridization free energy of a near-match is sufficiently large when the near-
match contains more than 4 errors for 25mer oligonucleotides and 10 errors for
50mer oligonucleotides[13].

Table 3 shows the number of exact bad gene relations of each genome obtained
by the brute force approach. This number constitutes the actual number of pairs
which need to be compared to filter out bad probes. From this, we know that
there is a very small number of gene pairs which need to be compared. In the
case of S. cerevisiae, the value 10037 is only about 0.5% of the total number
of comparisons(6343*6342/2) between the genes. The experiments were done
under 8, 7, 6 and 5-gram and q-gram thresholds of 4, 3, and 2. To evaluate
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Table 2. Information of datasets used in experiments

E. coli S. pombe S. cerevisiae N. crassa Homo sapiens

Length (bps) 3,469,168 7,278,949 8,865,725 16,534,812 32,297,711

# of genes 3466 5,487 6,343 10,620 25,560

Table 3. The number of total bad relations of each genome

E. coli S. pombe S. cerevisiae N. crassa

Total bad relations 522 2444 10037 31489

Table 4. Experimental Results for the genome of S. cerevisiae with MT 0.5

8-gram 7-gram 6-gram 5-gram
Sensitivity Sensitivity Sensitivity Sensitivity
Efficiency Efficiency Efficiency Efficiency

Run time(min) Run time(min) Run time(min) Run time(min)

w = 6

0.6862 0.7705 0.8611 0.9679
0.9996254 0.9995518 0.9993949 0.998764

6 8 19 57

w = 5

0.756 0.8349 0.9166 0.9887
0.9995673 0.9994504 0.9991398 0.997775

6 8 19 56

w = 4

0.8245 0.8975 0.9594 0.9961
0.9994752 0.9992599 0.998621 0.996045

5 8 19 58

w = 3

0.8848 0.9446 0.9771 0.9981
0.99933 0.998932 0.997762 0.993843

6 8 21 64

w = 2

0.9266 0.9686 0.9851 0.9985
0.9991163 0.998447 0.996777 0.99223

7 12 32 106

the capability of our algorithm, we use measurements of the sensitivity and
efficiency. The sensitivity represents not only the ratio of true positive to bad
gene relations, but also the accuracy of our algorithm. The efficiency represents
the ratio: 1 − (true positive + false positive)/total relations(= n(n − 1)/2).
This ratio provides an indication of how much our pre-processing procedure can
contribute to any probe selection algorithm. As Table 4 shows, its contribution
is great and the accuracy is very high.

Table 5 shows the running time of the previous probe selection algorithms and
our preprocessing algorithm. We only include the running time for the case where
the sensitivity is greater than 0.95. We tested the result of S. cerevisiae obtained
by using our preprocessing algorithm as the input of the brute force approach.
It took about 7 minutes. Therefore, the total running time is about 19(12 + 7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Fast Preprocessing Algorithm to Select Gene-Specific Probes 23

Table 5. Comparison between our algorithm and other algorithms

Li and Rouillard, Rahmann Sung Our
Stormo Herbvert and Lee algorithm

and Zuker (>0.95)

E. coli 1.5 days 3.1 mins 1.2 mins

S. cerevisiae 4 days 1 day 49 mins 12 mins

N. crassa 4 hours 3.5 hours 28 min

Homo sapiens 20 hours 1.8 hours

Fig. 3. Running times of our preprocessing algorithm for various datasets with MT 0.5

Fig. 4. (a) Sensitivity and (b) Efficiency of our algorithm for S. cerevisiae with MT 0.5

minutes. We also measured how long it would take to preprocess the human
genome with 25560 genes. It took about 110 minutes and screened out 300408
pairs of genes which need to be compared to select the probes. This number,
300408, is less than the number of gene comparisons of E. coli with 3466 genes
which needed by other algorithms. If our algorithm is used as a preprocessing
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procedure of other algorithms to find specific probes, then the running time of
other algorithms can be greatly improved.

Below, we show the results of our experiments for all data sets except for
the human genome under various q-grams and w values with MT 0.5. From the
result, we can observe that the performance of our algorithm is very well under
parameters of 7-gram and w 4 or 3 with MT 0.5. However, the parameter values
can be selected as needed.

5 Conclusion

The crux of the microarray design for large genomes lies in how to select unique
probes efficiently that distinguish a given genomic sequence from other sequences.

We proposed a new approach to the probe selection problem. Based on the
observation that there is very small number of genes which cause the probe can-
didates of a gene to be bad probes, our approach involves a novel preprocessing
procedure that screens out bad relation genes (not probes) for each gene in the
commonly used scheme. It screens out bad genes by verifying those regions with
more than a certain threshold number of q-grams. Our preprocessing algorithm
helps other probe selection algorithms to perform very efficient probe selection
by providing them with relation sets obtained by the preprocessing procedure as
inputs. We also demonstrated that our new approach greatly reduces the running
time and guarantees high accuracy for large genomes.

In further research, we will extend our experiment to very large genomes
such as tree genomes. In addition, we will generalize our approach so that the
edit distance can be also used as a specificity measure. Since the probe selection
problem using the edit distance as a specificity measure is a more time consuming
problem, it is important to have such a new approach which can tackle the
problem more efficiently.
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Abstract. We present two absolute error approximation algorithms for
a point-to-surface registration problem in 3D with applications in med-
ical navigation systems. For a given triangulated or otherwise dense sam-
pled surface S , a small point set P ⊂ R

3 and an error bound μ we present
two algorithms for computing the set T of rigid motions, so that the di-
rected Hausdorff distance of P transformed by any of these rigid motions
to S is at most the Hausdorff distance of the best semioptimal1 matching
plus the user chosen error bound μ.

Both algorithms take advantage of so called characteristic points Sc ⊂
S and Pc ⊂ P which are used to reduce the search space significantly. We
restrict our attention to scenarios with |Pc| = 2. The algorithms are imple-
mented and compared with respect to their efficiency in different settings.

1 Introduction

Most neurosurgical operations nowadays are supported by medical navigation
systems. The purpose of these systems is to provide the surgeon with additional
information during the surgery, like a projection of the instrument into a 3D
model (of the part) of the patient (where the actual operation is taking place).
These models are computed from computer tomography (CT) or magnetic res-
onance tomography (MRT) scans of the patient. Once the rigid transformation
that correctly maps the operation field into the model is known, this problem
can be solved easily. Thus, the central task is the computation of that transfor-
mation, the so–called registration process. A common approach to registration in
current medical navigation systems makes use of so called landmarks. These are
special markers fixed on the patient (from the model acquisition until the begin-
ning of the surgery), such that their positions can be automatically recognized
in the model. After gaging the marker positions with the tracking system at the
beginning of the surgery (or at least the positions of a subset of four or five
markers), the correct rigid transformation mapping the two point configurations
� Supported by the German Research Foundation (DFG), grand KN 591/2-1.
1 We call a matching semioptimal, if the directed Hausdorff distance of P to S is

minimized under the restriction that Pc is aligned centrally with any two points of
Sc.

F.P. Preparata and Q. Fang (Eds.): FAW 2007, LNCS 4613, pp. 26–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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to each other can be computed. Since the total number of markers is small, one
can find the correct correspondence between the points of the two configura-
tions even by brute force techniques. A more advanced approach making use of
geometric hashing techniques is presented in [3].

Frequently surgeons would like to avoid the use of markers for medical reasons,
and because in many cases (e.g. spinal surgery) it is very hard or even impossible
to fix markers before the surgery. Thus, the design of algorithms for registration
procedures without markers is an important and challenging task. In that case
the surgeon would gage only a small number of arbitrary points from the relevant
anatomic region and the algorithm has to find the best matching of such a point
pattern onto the surface of the corresponding region in the model.

A lot of research has been done in the last years in the domain of registration
algorithms with medical applications. E.g. geodesics and local geometry are used
in [4] to determine point correspondence between point-pairs of 3D-surfaces,
another approach uses thin splines to solve the point registration problem [5],
applications in transcranial magnetic stimulation by point-to-surface registration
using ICP are presented in [6].

In this paper we present a new approach to the registration problem without
markers. To understand the background, we have to discuss the drawbacks of two
alternative approaches. Firstly, there are several heuristic methods that could be
used directly, for example ICP (Iteratve Closest Point) or simulated annealing
combined with randomly generated starting configurations. Both methods per-
form very well, but they might get stuck in a local optimum far from the global
optimium and, thus, they do not guarantee that the computed transformation
is close to the optimal one. Secondly, one could try to reconstruct a surface from
the tracked points and to apply a surface matching algorithm. However, this
would require a rather dense pattern of tracked points and, moreover, most of
these surface matching algorithms contain also some heuristic routines.

Minimising the distance between a point set and a surface under rigid motions
is usually a hard algorithmic problem, mostly because rigid motions in R

3 have
six degrees of freedom. We try to reduce that huge search space making use of
few anatomical landmarks in addition to the arbitrarily gaged points. We call
such points characteristic points. They are known in the model (e.g the root of
the nose) and play the role of natural markers. In a first step the surgeon has to
gage as many characteristic points as possible followed by a few arbitrary, addi-
tional points. If the surgeon can manage to gage at least three (non-coalligned)
characteristic points, one can apply the established landmark approach using the
other points as additional control points. In this paper we study the nontrivial,
but very realistic case, that the point set contains only two characteristic points.

The distance function considered in this paper is the so-called directed Haus-
dorff distance defined by

H(A, B) = sup
a∈A

dist(a, B) = sup
a∈A

inf
b∈B

‖a − b‖.

where ‖a − b‖ = dist(a, b) is the Euclidean distance between a and b. Some basic
ideas of our general approach can be found in [1] where we mainly discussed the
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problem of approximating the minimal directed Hausdorff distance of the mea-
sured points on the patient to the model with a constant factor λ > 1. Such ap-
proximations can be computed in polynomial time, but the algorithm is not very
useful in practice because of large constants and a ( 1

(λ−1) )
5 factor in the run time.

Here, we will present two solutions for a version of the problem that meets
more the practical requirements: the approximation with a constant, additive
error. The first solution is basicly an adaption of a sweep line algorithm in angle
space that can be implemented easily. The second solution uses an augmented
segment tree as an auxiliary data structure. Although in the theoretical analysis
and in our experiments both algorithm require nearly the same run time there
is also a strong argument in favor of the second approach: If the input data
does not suffice to guarantee a unique solution, the update with one or more
additionally gaged points is much faster with the segment tree approach.

Formal problem description. We assume that the model is given as a triangulated
surface S consisting of n triangles together with a set of nc characteristic points
Sc ⊂ S, where nc is a small number. To avoid scaling factors in the analysis,
we assume that the surface is a subset of the unit cube [0, 1]3. Furthermore, the
second part of the input is a set of points P ⊂ R

3 with a distinguished subset of
characteristic points Pc ⊂ P . The quality of a rigid transformation t : R

3 → R
3

is defined by

ε(t) = max { H(t(P ), S), H(t(Pc), Sc) }.

A rigid transformation t that minimizes ε(t) is called an optimal transfor-
mation or an optimal matching and the quality of an optimal transformation is
denoted by εopt. Given an absolute error bound μ we ask for the set T of rigid
motions, so that

∀t ∈ T : H(t(P ), S) ≤ εopt + μ ∧ H(t(Pc), Sc) ≤ εopt + μ.

Our results. Let tinit be the rigid transformation that aligns the points of Pc =
{p, p′} with two points s, s′ ∈ Sc such that ‖p − s‖ = ‖p′ − s′‖. Let tα be the
rigid motion that rotates around the line through s and s′ by an angle of α, then

εsem = min
α∈[0,2π)

H(tα ◦ tinit(P ), S)

is called value for the best semioptimal matching.
As described in [1] the value for the best semioptimal matching εsem and the

ratio of the largest distance of any point in P to the rotation axis to the distance
of the points in Pc can be used to find a lower bound to εopt. This bound together
with an approximation value λ > 1 can be used to introduce a grid structure
around the axis, s.th. the best semioptimal matching for all perturbations of the
rotation axis through the grid points is guaranteed to be at most (λ − 1)εopt

away from the optimal matching position.
In this paper we present two algorithms for computing the set of rigid motions

t which fulfill the criteria that H(t(P ), S) ≤ εsem + μ. Both implementations re-
quire a pre-processing time of O(n/μ3). The first implementation is a modified
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sweep line variant having a run time of O ((k/μ) log k) for k = |P \ Pc|. The
second implementation uses an augmented segment tree and has a run time of
O ((k/μ) log (k/μ)). Measuring and adding a point to P to increase the quality of
a computed solution costs O ((k + 1)/μ) time in case of the sweep line version. The
same operation costs O((k + 1)/μ log (k/μ)) for the segment tree variant, which
in practice is faster than the sweep line method, as our evaluation results show.

Notes on assumptions. This paper concentrates on algorithms computing a set
of rigid motions, which applied to the measured point set minimize the directed
Hausdorff to the model. Due to the flexibility of the cranial bone and the way
how a patient, more precisely his head is fixed during the operation, the skull
may undergo slight non-rigid deformations. We consider these effects on hard
tissues like bones to be marginal so that only rigid motions instead of affine
transformations are taken into consideration. A lot of research has been done for
non-rigid registration for soft tissue surgery, like in [10,11].

Measuring characteristic points2 instead of auxiliary landmarks whose posi-
tion in the operation field is exactly defined, causes an additional error. This
error is due to the distance of the characteristic points as defined in the model
and the actual measured landmarks on the patient. In this paper this error is
not analysed separately, but influences the position of the rotation axis relative
to P \ Pc and therefore the quality of the semioptimal matching.

Organisation of this paper. This paper is structured as follows: Section 2 de-
scribes the two approximation methods and their analysis. It is furthermore de-
scribed how these algorithms have to be modified in order to handle points added
later on. Section 3 compares the implementation of the two introduced registra-
tion methods and evaluates their performance on several test settings. Section 4
concludes with summarizing the presented results and gives an overview of the
questions and tasks that remain.

2 The Registration Process

In this chapter we first present a general strategy for solving instances of the
considered registration problem and then describe two different implementations
for this strategy.

2.1 A Strategy for Finding Semioptimal Registrations

Let p and p′ be the two characteristic points in Pc. For every transformation t
the distance H(t(Pc), Sc) is a lower bound for ε(t) and there is always a pair
(s, s′) of two characteristic points s, s′ ∈ Sc that realizes this distance. Thus, we
fix such a pair (s, s′) and construct a rigid transformation tinit that minimizes
max{dist(t(p), s), dist(t(p′), s′)}. Note that such an initial transformation can

2 Landmarks which correspond to distinctive features in the area of interest on the
patient.
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be obtained by translating first the center of the line segment [p, p′] onto the
center of the line segment [s, s′] and rotating the translated segment [tr(p), tr(p′)]
around the common center such that all four points are on the same line and p
gets on the same side of the center as s, see figure 1.

s

s′

p

p′

s

s′

p
p′

a) b)

Fig. 1. The initial transformation tinit which centrally aligns s, s′ ∈ Sc and p, p′ ∈ Pc

Let T(s,s′) denote the family of all rigid transformations with the same prop-
erty as the inintial one, i.e.,

T(s,s′) = { t | t(p), t(p′), s and s′ are co–aligned
and dist(t(p), s) = dist(t(p′), s′) < dist(t(p), s′)}

It is clear, that any t ∈ T(s,s′) can be obtained by starting with the initial
transformation tinit and then rotating around the axis spanned by the four
points. A transformation t ∈ T(s,s′) is called semioptimal (with respect to the
pair (s, s′)) if it minimizes the distance H(t(P \ Pc), S). In [1] it is shown how
to approximate an optimal transformation starting from semioptimal ones. The
idea is to define a pertubation scheme for mapping p and p′ and computing
semioptimal matchings with respect to the rotation axis spanned by the images
of p and p′. Since these ideas also apply for absolute error approximations, we
concentrate here on the problem how to approximate a semioptimal matching,
provided that the images of p and p′ are fixed.

Recall that S is a subset of the unit cube and that an error bound μ is
given. We subdivide the unit cube into a set G of subcubes of side length μ/

√
3.

This way μ is an upper bound for the distane between two points in the same
subcube and the total number of subcubes is O(1/μ3). Consider a pair (s, s′) and
an initial transformation tinit ∈ T(s,s′), the line l containig s, s′, tinit(p), tinit(p′)
and the point set P ′ = {tinit(p) | p ∈ P \ Pc}. Let tα be the rigid motion which
corresponds to an rotation around l by an angle of α. For each p ∈ P ′ the sets
Cp of all subcubes are determined which are intersected by the trajectory of p
around l:

Cp = {c ∈ G | ∃α ∈ [0, 2π) : tα(p) ∈ c} .
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Let
[
αc,p, α

′
c,p

)
be the angle interval for a cell c ∈ Cp, such that αc,p denotes the

angle for which tαc,p(p) enters the subcube c and α′c,p denotes the angle for which
p leaves c. After a whole rotation of p around l the intervals of the collected set
Cp form a partition of the angle space:

∀p ∈ P ′ :
⋃

c∈Cp

[
αc,p, α

′
c,p

)
= [0, 2π) .

The distance of a subcube c to the surface is defined as

dist(c, S) := min
q∈c

min
s∈S

‖q − s‖.

Let A(
⋃

p∈P ′ Cp) be the refined subdivision induced by the intervals of the col-
lected subcubes. To find the best rotation angles we determine the set of cells Amin

of this arrangement, for which the largest distance value of a covering subcube is
minimal. Let Â =

⋃
a∈Amin

a be all angles contained in Amin, then the following
inequality holds H(tα(P ′), S) ≤ εsem + μ for all α ∈ Â, see figure 2.

0 2π

partition for p1

partition for p2

partition for p3

A(
⋃

p∈P ′ Cp)

Fig. 2. The refined subdivision A(
�

p∈P ′ Cp) of the interval sets for P ′ = {p1, p2, p3}

For any α ∈ Â let Bα be the set of all subcubes containing at least one point
of P ′ rotated by α around l:

Bα = {c ∈ G | ∃p ∈ P ′ : tα(p) ∈ c}

and let cα = arg maxc∈Bα dist(c, S) be one of the subcubes with the largest
distance to S. As the largest distance of any two points within one subcube is at
most μ, the directed Hausdorff distance of tα(P ′) to S is at most dist(cα, S)+μ.
And as εsem is an upper bound to dist(cα, S), the following condition holds:

∀α ∈ Â : H (tα(P ′), S) ≤ dist(cα, S) + μ ≤ εsem + μ

2.2 The Implementation

We present two methods for evaluating the cells Amin ⊂ A(
⋃

p∈P ′ Cp) that
satisfy this condition, the first is a standard sweep line approach and the second
uses a data structure called counting segment tree. Even though the second is
slightly more complex than the first we will see in the next chapters that the
segment tree method outperforms its competitor in practice when it comes to
adding points to a solution in order to increase its quality.
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In both cases the sets of subcubes Cp for all p ∈ P ′ are collected by tracing
the trajectory of p through G. If G is organised as a three dimensional array it
takes O(1) time to locate the cell cp ∈ G containing p. By intersecting the six
sides of cp with the trajectory of p around l one can find the succeeding cell to
the current cell also in O(1) time. By continuing that way until cp is reached
again, one can gather Cp in O(1/μ) time, as each Cp contains at most this many
subcubes. While walking along the trajectory the intervals for each point and
inspected subcube are also evaluated and organised as a linked list, so that each
interval stores a pointer to the succeeding interval of the next subcube on the
trajectory. Moreover we compute in a pre-processing step the distances of each
subcube of G to the surface S and store a copy of this value in each angle interval
that is later evaluated. This can be done naively by evaluating for all O(1/μ3)
subcubes their shortest distance to any of the n triangles of the model, taking
O(n/μ3) time.

Looking at the application in which these registration process are used this
time consuming pre-processing can be done directly after the model is con-
structed by the MRT- or CT scan and therefore it is not crucial for the matching
time during the surgery.

2.3 The Sweep Line Variant

In this variant we sweep over the |P ′| interval sets from 0 to 2π and keep track
of the largest distance value of the corresponding subcubes under the sweep line.
These distances are stored in a max-heap which is initialised with the distance
values of the subcubes whose corresponding intervals contain the rotation angle
α = 0. The event queue for the sweep line process consists of all intervals ordered
increasing by their largest contained angle.

Suppose that i =
[
αc,., α

′
c,.

)
is the current element in the event queue. We

then assign the current top value of the heap to the cell of the arrangement
which right limit is α′c,., remove the value dist(c, S) from the heap3 and add the
distance value of the subcube corresponding to successor of i(see figure 3). While
processing the event queue the algorithm keeps track of the cells Amin of the
arrangement which have the smallest distance value.

2.4 The Counting Segment Tree Variant

An alternative approach for finding the best cells of the refinement is to use a
data structure called counting segment tree (cST). A cST is a slightly modified
variant of the well known segment tree data structure as e.g. described in [2].
This structure stores and organizes an arrangement of intervals and keeps track
of of the number of intervals that cover a cell of the arrangement. Moreover a
cST is able to report in O(1) time the cell tmax which is covered by the largest
number of intervals.

3 Note that this is not necessarily the current maximal value of the heap.
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Fig. 3. a) the next event in the sweep line is the interval with distance 5 b) top: heap
before handling i, bottom: after handling i

We first build a counting segment tree upon the refined subdivision
A(

⋃
p∈P ′ Cp) of all collected intervals and then add intervals to this tree in

a certain order. Therefore all intervals are merged and sorted in an ascending
manner with respect to the distance values of their corresponding subcubes. Fi-
nally the intervals are inserted into the counting segment tree in the introduced
order starting with the interval which corresponding subcube has the smallest
distance value.

Let i be the first interval added to the segment tree that causes tmax to be
covered by |P ′| intervals and dist(i, S) be the distance value of its corresponding
subcube. We then keep inserting intervals to the tree in the described order
as long as their corresponding distance values are equal to dist(i, S). As soon
as the first interval has a corresponding distance value larger than dist(i, S) the
algorithm terminates and all cells of the refinement are reported that are covered
by |P ′| intervals.

As each Cp forms a partition of the angle space, the intersection of two in-
tervals gathered by the rotation of the same point p is always empty. In other
words if a cell is covered by |P ′| intervals, all points in P ′ are moved into sub-
cubes that have an distance value of at most dist(i, S) when rotated by any
angle taken from this intervals. As the intervals are inserted in ascending order
of their corresponding distance values, the reported cells are equal to the Amin

cells described in the previous section.

2.5 Increasing the Quality by Adding Points to a Solution

Motivated by the medical application of these algorithms it is desired to be able
to increase the quality of a matching by measuring additional points during
the operation. Therefore one has modify the previous methods so that they
dynamically support adding points to P , the set of measured points.

In this section we compare the two methods stated above regarding to this
demand. Let q be the additional measured point and Cq the set of all subcubes
which are intersected by the trajectory of q around the rotation axis l.

Adding points with the sweep line method. Let A(
⋃

p∈P ′ Cp) be the refined sub-
division of all intervals collected for the point set P ′ = {tinit(p)|p ∈ P \ Pc},
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where each cell stores its assigned distance value, computed during the sweep
line process.

The new event queue is emulated by taking the next interval either from Cq,
or A(

⋃
p∈P ′ Cp), depending on which has the smaller right interval limit. This

means all intervals of the old arrangement together with the intervals of the
additionally collected intervals corresponding to cells in Cq have to be inspected
to find the new set of best rotation angles. That, apart from the log |P ′| factor
for the max heap is as expensive as restarting the whole sweep line process with
P ∪ {q}.

Adding points with the segment tree variant. To add a point to a solution which
has been computed with the segment tree method one has to sort the collected
intervals corresponding to Cq with respect to the distance values of their subcubes.

As before we now add intervals into the tree as long as the number of intervals
covering tmax is smaller then |P ′| + 1. The interval added to the tree is either
the head of the old event queue or the head of the sorted list of intervals for q,
depending on the smaller distance value of their corresponding subcubes. If an
interval iq of Cq is added to the tree it might happen, that a leaf of the segment
tree containing an interval limit of iq has to be splitted. This corresponds to
refining the underlying arrangement. Note that the segment tree is now not
guaranteed to be balanced anymore, but even if all intervals of q would be added
the height of the segment tree can only increase by at most two.

This method of adding points to a solution has the advantage, that all pre-
viously gathered information can directly be reused to find the next optimum
without inspecting all cells of the arrangement.

2.6 Analysis

The pre-processing step computes for all subcubes their distance to the surface.
For n = |S|, this can be done naively in O(n/μ3) time.

In a regular grid with mesh size μ/
√

3 embedded in the unit cube any tra-
jectory of a point rotating around an axis can intersect O(1/μ) subcubes. For
k = |P \ Pc| it takes O(k/μ) time to determine all inspected subcubes and their
corresponding angle intervals.

The sweep line variant merges all k interval sets in O(k/μ log k) and sweeps
through all O(k/μ) events and updates the heap in O(log k) time, this results
in a matching time without pre-processing of

O
(

k

μ
log k

)

for this method.
The run time of the segment tree method is dominated by the time needed to

order all intervals with respect to the distance value of their corresponding sub-
cubes, which is also the time needed to build the segment tree. Adding an interval
to the tree takes O(log k/μ) time, therefore the run time of this variant is

O
(

k

μ
log

k

μ

)
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Adding points to a solution. In case of the sweep line method all O(k/μ) inter-
vals of the refined subdivision and all O(1/μ) intervals of the added point are
inspected. As both sets are given as a linked list it takes O((k + 1)/μ) time to
merge them and to update the refined subdivision.

To add a point p with the counting segment tree variant one has to sort all
intervals collected while rotating p around l in O((1/μ) log (1/μ)) time. Adding
an interval to the segment tree costs O(log k/μ) time. In the worst case, all
intervals that are not added to the tree during the computation of the previous
solution and all new intervals have to be added to find a cell of the refinement
that is covered by k + 1 intervals. Therefore the worst case run time of adding
a point with this method is O ((k + 1)/μ log(k/μ)). In practice actually only a
small number of intervals are added before a new solution is found.

The counting segment tree variant has the advantage that additional points
can be weaved into current solution without having to touch all cells of the
refinement of the previous solution.

3 Evaluation

We implemented both, the segment tree and the sweep line, variants of the
presented algorithms, and compared their performances. The evaluation was
performed on ten different test configurations, each consisting of: a triangulated
surface of a skull model S (comprised of nearly 3000 triangles), a set of four
characteristic points Sc ⊂ S, and a set of eight points P manually chosen from
the patient, with a subset of two characteristic points Pc ⊂ P . In all configura-
tions the grid density μ was set to 0.01. The evaluation of the implementations
was performed on a 2.33 GHz Intel Core 2 Duo processor computer equipped
with 2GB of main memory.

We measured the matching time (MT ) (the time needed to compute the best
rotation angle for each possible assignment of the two points of Pc to any two
points of Sc), and the matching time for the best assignment (MT-BA) (the
time needed to compute the best angle for the right assignment of Pc to Sc).
The results, see Table 1, show that the differences of the matching times of the
both variants are negligible.

However, the segment tree variant has an obvious advantage in enhancing the
quality of the registration. Usually, after the best registration between P and S
is determined, one or more additional chosen points are added to the point set P
and the registration is reevaluated. In our tests, we added three such additional
points. In the case of the sweep line variant, each time we add a new additional
point, a sweep over the interval sets of all points of P must be restarted. In
contrast, in the case of the segment tree variant, the already built segment tree,
with all existing information about added intervals, can be reused, which makes
the operation of adding a new point quite fast (for experimental results see the
values for 1.AP-3.AP in Table 1).

The screenshot of figure 4 shows a triangulated model of a skull, a set P of ten
points and three characteristic points Sc. The two characteristic points Pc ⊂ P
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Table 1. Comparison of of the segment tree and the sweep line method

counting segment tree method sweep line method
case MT MT-BA 1.AP 2.AP 3.AP MT MT-BA 1.AP 2.AP 3.AP

1 1.53 0.16 0.07 0.07 0.07 1.48 0.16 0.3 0.38 0.48
2 0.47 0.26 0.09 0.07 0.08 0.46 0.25 0.33 0.44 0.55
3 0.13 0.05 0.04 0.04 0.04 0.12 0.05 0.1 0.16 0.21
4 1.76 0.47 0.07 0.03 0.11 1.75 0.46 0.53 0.61 0.68
5 1.1 0.19 0.04 0.07 0.03 1.08 0.2 0.32 0.39 0.45
6 3.95 0.47 0.09 0.09 0.07 3.83 0.48 0.6 0.7 0.81
7 0.97 0.19 0.07 0.08 0.08 0.94 0.19 0.33 0.43 0.55
8 1.19 0.48 0.07 0.09 0.08 1.17 0.48 0.44 0.85 0.99
9 0.86 0.35 0.07 0.11 0.09 0.86 0.36 0.56 0.69 0.79
10 2.15 0.59 0.08 0.09 0.08 2.11 0.58 0.71 0.85 0.98

AVG 1.41 0.32 0.07 0.07 0.07 1.38 0.32 0.42 0.55 0.65

MT=matching time, MT-BA=matching time for the best assignment,
i.AP=time for adding the i-th point (measured in seconds)

S

Pc matched to Sc

P \ Pc

unmatched Sc

Fig. 4. The model S and the pointset P in the approximated semioptimal position
(μ = 0.01), along with the trajectories of the points in P \ Pc

are located at the top of the nasal bone and on the center of the maxilla (upper
jaw) respectively.

4 Conclusion and Future Work

We have presented two algorithms for a point-to-surface matching problem that
is motivated by medical applications. The presented approach does not have the
drawbacks of the methods currently used in medical navigation systems, like the
necessity of landmarks or the chance to get stuck in a local minimum and it
achieves a fast matching time that is competitive with existing approaches.
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An interesting problem, especially from theoretical point of view, is to in-
spect the matching scenario with only one characteristic point, a scenario that
increases the search space and therefore the matching time. Applying the algo-
rithms directly on the voxel data, instead of applying them on a triangulated
approximation reconstructed from this voxel data, could further increase the pre-
cision of the matching and significantly reduce the preprocessing time. On the
practical side, it is planned to embed this algorithm in a real medical navigation
system and test its performance in real world applications.
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Abstract. A digital signature is a term used to describe a data string
which associates a digital message with an assigned person only. There-
fore, the main goal (or contribution) of this work is to study a simple
method for generating digital signatures and cryptography communica-
tion using biometrics. The digital signature should be generated in the
way that it can be verified by the existing cryptographic algorithm such
as RSA/ElGamal without changing its own security requirement and
infrastructure. It is expected that the proposed mechanism will ensure
security on the binding of biometric information in the signature scheme
on telecommunication environments.1

Keywords: Biometrics Digital Key, Fuzzy Vault, Secure Communica-
tion, Digital Signature, Digital Key Generation.

1 Introduction

A digital signature has many applications in information security such as au-
thentication, data integrity, and non-repudiation. One of the most significant
advances in digital signature technologies is the development of the first practi-
cal cryptographic scheme called RSA[1], while it still remains as one of the most
practical and versatile digital signature techniques available today[2].

It is often desirable to generate a digital signature by deriving a signature key
(or a semantically equivalent value) from human source(biometrics) in today’s
communications environment rather than keeping the key in an external hard-
ware device. Therefore, biometrics is the science of using digital technologies to
identify a human being based on the individual’s unique measurable biological
characteristics[4,5].

This work proposes a general framework of biometric digital signature key
generation from both technical and practical perspectives in order to establish
safe environment using telebiometric systems and protect individual privacy.
1 This work was supported by the Korea Research Foundation Grant funded by the

Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-311-
D00857).
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From the technical point of view, this work proposes several biometric dig-
ital key and signature generation frameworks to ensure data integrity, mutual
authentication, and confidentiality. From the practical perspective, this work de-
scribes overall framework that allow protection of biometric data as related to
their enrolment, signature generation and verification. This work also outlines
measures for protection of the biometric information as related to its generation,
storage, and disposal.

Actually digital key generation from biometric has many applications such
as automatic identification, user authentication with message encryption, etc.
Therefore, this work analysis the related schemes and proposes a simplified model
where a general signature scheme (including an RSA scheme that requires a large
signature key) can be applied without losing its security.

This work also can be applicable into authentication frameworks for protec-
tion of biometric systems as related to their operational procedures, roles and
responsibilities of the personnel involved in system design. It is expected that
the proposed countermeasures will ensure security and reliability on the flow of
biometric information in the telecommunication environment.

2 Overview on Existing Scheme

2.1 Biometric Digital Key

Digital Signature Key Generation for Telebiometrics. Fig. 1 depicts the
common component or modules on Telebiometrics system with proposed key
generation module, which commonly includes a step to extract features through
signal processing after acquiring biometric data from a biometric device such
as a sensor. The features are then compared or matched against the biometric
data, which were already obtained through the same processes and saved in a
database, and the result is decided on decision step.

Based on existing Telebiometrics model, this work proposes digital signature
keys (both private key and public key pair) generation framework from biometric
information. Therefore, it is possible to combine existing public key infrastruc-
ture such as RSA[1] or ElGamal[3] to generate digital signature key on biometric
data.

Therefore, the main goal (or contribution) of this work is to study a sim-
ple method for generating digital signatures using biometrics by exploiting the
existing Fuzzy Vault[4] scheme.

Biometric Template. Biometric templates are processed measurement feature
vectors. Biometrics of different individuals is independent realizations of a ran-
dom process that is equal for all individuals. We assume that the processing of
biometrics results in templates that can be described as a sequence of n indepen-
dent identically distributed random variables. Noisy measurements of biometrics
are modeled as observations through a memoryless noisy channel. It is assumed
that the enrollment measurements of the biometric templates are noise free.
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Fig. 1. Biometric Digital Key Generation on Telebiometrics

We examine the existing biometrics-based digital signature scheme and analy-
sis them on the fly. First this document can classify those schemes into key deriva-
tion(generation) and signature generation and verification framework. The key
derivation schemes imply that the signature key is derived directly from bio-
metrics while the key authentication schemes mean that the signature key is
accessed by biometric authentication.

Common Digital Signature Scheme. A cryptographic primitive that is fun-
damental in authentication, authorization, and non-repudiation is the digital
signature. The process of signing entails transforming the message and some
secret information held by the entity into a tag called a signature[5].

• M is the set of messages which can be signed.
• S is a set of elements called signature, possibly binary strings of a fixed length.
• SA is a transformation from the message set M to the signature set S, and is

called a signing transformation for communication entity A. The transfor-
mation SA is kept secret by sender A, and will be used to create signatures
for messages from M.

• VA is a transformation from the set S × M to the set {true; false}. VA is
called a verification transformation for A’s signatures, is publicly known,
and is used by other entities to verify signatures created by A.

Therefore, the transformations SA and VA provide a digital signature scheme
for A. Occasionally the term digital signature mechanism is used. The size of the
key space is the number of encryption/decryption key pairs that are available in
the cipher system. A key is typically a compact way to specify the encryption
transformation (from the set of all encryption transformations) to be used. Each
can be simply described by a permutation procedure which is called the key. It
is a great temptation to relate the security of the encryption scheme to the size
of the key space.

RSA is the first practical cryptographic scheme for digital signature and still
remains as one of the most practical and versatile techniques available today

J.-G. Jo, J.-W. Seo, and H.-W. Lee
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[1]. This document supposes to use a simple hash-and-sign RSA primitive in a
probabilistic manner (with k -bit random numbers).

The public-private keys are respectively 〈e, N〉 and 〈d, N〉 where N is the
product of two distinct large primes p and q, and ed ≡ 1 mod φ(N) for the
Euler totient function φ(N) = (p − 1)(q − 1) [1]. The public key is postulated to
be certified by the CA. We assume signer S returns signature on a message m;
〈s, r〉 where s ← H(m, r)d mod N and r ← R{0, 1}k.

The ElGamal public-key encryption scheme can be viewed as Diffie-Hellman
key agreement in key transfer mode[3]. Its security is based on the intractability
of the discrete logarithm problem and the Diffie-Hellman problem. The ElGa-
mal signature scheme is a randomized signature mechanism. It generates digital
signatures with appendix on binary messages of arbitrary length, and requires
a hash function h: {0, 1}∗ → Zp where p is a large prime number. Each entity
creates a public key and corresponding private key.

Public Key Infrastructure and Biometric Certificate. For an authorized
assertion about a public key, we commonly use digital certificates issued by a
trusted entity called the certificate authority (CA) in the existing public key
infrastructure(PKI).

Biometric identification process is combined with digital certificates for elec-
tronic authentication as biometric certificates. The biometric certificates are
managed through the use of a biometric certificate management system. Bio-
metric certificates may be used in any electronic transaction for requiring au-
thentication of the participants.

Biometric data is pre-stored in a biometric database of the biometric certificate
management system by receiving data corresponding to physical characteristics
of registered users through a biometric input device. Subsequent transactions to
be conducted over a network have digital signatures generated from the physical
characteristics of a current user and from the electronic transaction. The electronic
transaction is authenticated by comparison of hash values in the digital signature
with re-created hash values. The user is authenticated by comparison against the
pre-stored biometric certificates of the physical characteristics of users in the bio-
metric database.

2.2 Existing Biometric Key Mechanisms

Recently several methods have been proposed to use biometrics for generat-
ing a digital signature. In 2001, P. Janbandhu and M. Siyal studied a method
for generating biometric digital signatures for Internet based applications [12].
Their scheme was actually focused on using a 512-byte iris code invented by J.
Daugman [9,10], and deriving a singature key from the iris code.

In 2002, R. Nagpal and S. Nagpal proposed a similar method except that they
used a multi modal technique combining iris pattern, retina, and fingerprint
in order to derive RSA parameters [7]. In 2002, P. Orvos proposed a method
for deriving a signature key from a biometric sample and a master secret kept
securely in a smart card [14]. In the commercial fields, several products that
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generate a digital signature only by accessing the server or smart card through
biometric authentication, are being announced [8].

We could observe that the first two schemes are far from practice due to
their inadequate assumption on acquiring deterministic biometrics [7,12], while
the remaining results eventually use biometrics as only a means to access the
signature key stored in some hardware devices [8].

Recently in 2004, Y. Dodis, L. Reyzin, and A. Smith showed a method of using
biometric data to securely derive cryptographic keys which could be used for
authentication by introducing a secure sketch which allows recovery of a shared
secret and a fuzzy extractor which extracts a uniformly distributed string from
the shared secret in an error-tolerant way [8].

In 2005, X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith improved
this result in a way that resists an active adversary and provides mutual authen-
tication and authenticated key exchange [9]. There is an approach of template-
protecting biometric authentication proposed by P. Tuyls and J. Goseling in
2004 [6], but it does not provide a method for deriving a cryptographic key.

2.3 Secret Hiding Function : Fuzzy Vault Scheme

Fuzzy vault is a simple and novel cryptographic construction. A player Alice
may place a secret value k in a fuzzy vault and ’lock’ it using a set A of elements
from some public universe U . If Bob tries to ’unlock’ the vault using a set B of
similar length, he obtains k only if B is close to A, i.e., only if A and B overlap
substantially[4].

Thus, a fuzzy vault may be thought of as a form of error tolerant encryption
operation where keys consist of sets. Fuzzy vault like error-tolerant cryptographic
algorithms are useful in many circumstances such as privacy protected matching
and enhancement, authentication with biometrics and in which security depends
on human factors like fingerprint, etc[4].

Follow diagram(Fig. 2) shows the general Fuzzy Vault model for providing
biometric digital key generation and protection functions.

Key Generation

Fig. 2. Fuzzy Vault Scheme for Biometric Digital Key Protection
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3 Proposed Telebiometrics Digital Key Generation

Biometric data can be input by using diverse application such as fingerprint
reader, etc. Therefore, this work can use transformation module on input bio-
metric data. In this section, the proposed key generation framework is described
in detail. For example, follow diagram(Fig. 3) shows the abstracted flow on bio-
metric digital key pairs from the fingerprint data. On the Alice’s fingerprint data,
key pairs can be generated by using existing common public key cryptosystem
such as RSA or ElGamal.
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Fig. 3. Biometric Digital Key Generation Framework

In the key generation framework, the identity of the user is verified by com-
paring the captured biometric data with biometric certificate(BC) that is stored
in BCA. Therefore, no one can act for the original user in key generation mech-
anism. Only the user who has registered hisher own biometric template on BCA
can make public and private key pairs.

3.1 Biometric Digital Key Generation

Capturing Function. This function is a sensing and input module with feature
enhancement function. In fingerprint, ridge regions in the image are identified
and normalized. In detail ridge orientations are determined, local ridge frequen-
cies calculated, and then contextual filters with the appropriate orientation and
frequency are applied.

This function makes the biometric template from the biometric raw data.
The noise on the captured image is reduced through image processing. Then the
set of minutiae are extracted from the enhanced image. Finally, the biometric
template is made from location and angle values of minutiae set.

Matching Function. The role of adjustment function is finding helper data
that is used for revising location and angle values of minutiae set. A user’s
biometric data is always different whenever the biometric data is captured from
the device. Thus the adjustment function is needed to revise newly captured
biometric data.
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Biometric Digital Key Generation Function. The private key is generated
by hashing a user’s personal secret and a biometric template. If we use only the
biometric template for private key generation, we always get to generate same
key since the biometric data is unique. Moreover, if the private key is disclosed,
the user’s biometric data can not be used any more. Therefore, in order to
cancel and regenerate the private key, the user’s personal secret is also required
in generation of the private key.

The private key is generated by hash function such as MD5 or SHA-1 on
the biometric template with the personal secret. If we use only the biometric
template for private key generation, we always get to generate same key since
the biometric data is unique. Moreover, if the private key is disclosed, the user’s
biometric data can’t be used any more. Therefore, in order to cancel and regen-
erate the private key, the user’s personal secret is also required in generation of
the private key.

3.2 Biometric Digital Key Protection

Biometric template stores the subject’s biometric feature data, which is vital
to the overall system security and individual security. Once the biometric data
is leaked out, the individual authentication is confronted with threat, and in-
dividual biometric authentication in other applications may be confronted with
security vulnerability, too. So, it is most important to protect the biometric
template. Private secret data is stored as a protected form on protected storage.

The confidentiality of biometric private key can be assured by this mechanism.
For biometric private key as well as biometric template is a kind of individual
private data, the certificate user have right and must delete their biometric
private key from certificate database when the biometric certificate is revoked.

For example, we can implement ’Shuffling’ module by using fuzzy-vault scheme
as follows. Firstly, we generate fake minutiae set and insert them to the user’s
biometric template. Secondly, for hiding private key, polynomial for real minu-
tiae set(original biometric template) and polynomial for fake minutiae set are
constructed. Then, the private key is projected to each polynomial. Finally, the
protected data(template) is made by combining these results. It consists of minu-
tiae’s (location, angle, result) value set.

Key Shuffling Function. A key shuffling(secret locking) function is used to
hide the private key to enforce security of it. Therefore, it is a simplified secret
shuffling module on biometric data for hiding and securing the private key.

• Step 1: Generate fake minutiae set and insert them to the user’s biometric
template for protection of the template.

• Step 2: For hiding private key, polynomial for real minutiae set and polyno-
mial for fake minutiae set are constructed. Then, we project private key into
each polynomial and get results.

• Step 3: The protected template is made by combining results from step1 and
step 2. It consists of minutiae’s (location, angle, result) value set.
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Follow diagram(Fig. 4) shows the abstracted model on the secret locking and
private key hiding on the fingerprint data set based on Fuzzy Vault scheme.

Fig. 4. Biometric Digital Key Protection with Fuzzy Vault

3.3 Public Key Generation and Management

This work uses ElGamal signature scheme to simulate the digital signature gen-
eration in our framework. The private key is generated and the public key y is
computed as follows. Entity A generates a large random prime p and a gener-
ator g of the multiplicative group Zp. And then A selects a random secret a,
a ≤ a ≤ p − 2. A also computes y ≡ ga mod p. A’s public key is and private
key is (p; g; y). It is computationally infeasible to solve discrete logarithms over
GF(p). Generated public key (p; g; y) is stored on DB and certified by CA.

In order to combine biometric authentication with cryptographic techniques,
the proposed framework uses adjustment function during the digital signature
phase. The adjustment function guarantees that a unique template can be de-
rived from various biometrics of same person. In key generation framework, the
private key is concealed in the protected template in order to prevent disclosure
of the private key. In signature generation framework, the private key is derived
from the user’s biometric data and the protected template.

3.4 Biometric Digital Signature Generation and Verification

At first, user authentication is performed by comparing the signer’s captured
biometric image with his(her) own biometric template in BCA. Due to the prop-
erty of the proposed key extraction mechanism, the signer can not make other
signers do signing a message. The signer gets the private key which is extracted
from the key extraction mechanism. Then, the signer generates his(her) own
digital signature on the message with the private key and sends it to the verifier.

The verifier gets the signer’s public key from CA(Certificate Authority) and
verifies the signature on the message with the public key. Signature verification
mechanism is as same as that of ordinary digital signature verification scheme.
Entity at the receiver(server) can verify the digital signature by using the signer’s
public key and biometric certificate.
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We can generate the digital signature on the message using the private key
obtained from the input device. Entity A signs a binary message m of arbitrary
length. Any entity B can verify this signature by using A’s public key.

Biometric Digital Key Extraction. Follow diagram(Fig. 5) shows the digital
key extraction model. User authentication is performed at first as same as in key
generation mechanism. The user cannot disguise himself(herself) as a other for
extracting the private key stored by a protected data. This requirement should
be considered in key extraction mechanism based on biometric data. The private
key is extracted from protected data by using ’Key Extracting’ function with
biometric template and personal secret value. Cryptographic function such as
fuzzy vault can be applicable into this mechanism.
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Fig. 5. Biometric Digital Key Extraction Framework with Fuzzy Vault

Digital Signature Generation and Verification. Digital signatures are fast
emerging as a viable information security solution, satisfying the objectives of
data integrity, entity authentication, privacy, non-repudiation and certification.
In this section, digital signature generation mechanism is described using the
proposed key generation/extraction mechanisms in telebiometric environment.

The private key extracted from the previous module is used to sign the mes-
sage. The message and the signature on it are sent to the verifier. For example,
we can generate digital signature (r, s) on the message m from the input private
key.

Entity A generates a large random prime p and a generator g of the mul-
tiplicative group Zp. And then A selects a random integer α, 1 ≤ α ≤ p − 2.
A also computes y ≡ gα mod p. A’s public key is (p; q; y) and private key
is α. And then entity A signs a binary message m of arbitrary length. Any
entity B can verify this signature by using A’s public key. In detail entity A
selects a random secret integer k , with gcd(k, p − 1) = 1. And then A computes
r ≡ gk mod p and K−1 mod (p−1). Finally entity A can generates and computes
s ≡ k−1{h(m)− αr} mod (p − 1) and then A’s signature for m is the pair (r; s).

To verify A’s signature (r; s) on m, B should do the following: B obtains A’s
authentic public key (p : α; y) and verifies that 1 ≤ r ≤ p − 1; if not, then reject
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the signature. If satisfied, B computes v1 ≡ yrrs mod p and v2 ≡ gh(m) mod p.
B accepts the signature if and only if v1 = v2.

4 Cryptography Communication with Fingerprint

4.1 Message Encrypt with Digital Key

The main objective of biometric encryption is to provide privacy and confiden-
tiality using biometric digital key(a private and a public key pairs). In biometric
encryption systems each client receives public key from DB. Any entity wishing
to securely send a message to the receiver obtains an authentic copy of public
key and then uses the encryption transformation. To decrypt, the receiver ap-
plies decryption transformation to obtain the original message after biometric
authentication process. Common biometric encryption mechanism with digital
key is also possible as follow Fig. 6.
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Fig. 6. Biometric Encryption for Cryptography Communication with Fingerprint

For message encryption, private key is extracted from the protected data
stored by fuzzy vault scheme. And then we can generate encrypted ciphertext
by using public key.

4.2 Implementation Results

We implemented a biometric encryption system with fingerprint in MATLAB.
First step is a fingerprint enhancement proceedure for extracting a feature set
of fingerprint minutiae. After this fingerprint enhancement function, a digitized
feature set of minutiae is generated and it is used for generating private key
with personal secret from template registration and key generation step. Follow
Fig. 7 show the fuzzy vault set after locking someone’s secret(private key) within
his/her own biometric template. Developed module provides and generates pro-
tected template from input fingerprint template.

Fig. 8 shows the implementation and experimental results on the encryp-
tion/decryption mechanism based on ElGamal type of biometric digital key.
Using biometric key pairs, we can encrypt and decrypt plaintext message.
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Fig. 7. Fuzzy Vault Result After Locking Private Key within Fingerprint Feature Set

Fig. 8. Fuzzy Vault based Biometric Encryption and Decryption in MATLAB

5 Conclusions

We propose biometric digital key generation/extraction mechanisms for crypto-
graphic secure communication, which are essential both for authentication and
digital signature protocols on open network environments. The proposed sys-
tem uses biometric template in Biometric Certificate for user authentication
in key generation/extraction mechanisms. This work shows how to generation
key from biometrics and message encryption. We can use user authentication
and cryptography communication. So we can protect biometrics and commu-
nications that using Fuzzy Vault and ElGamal encryption scheme. Someday
this work will be used Internet banking system or society that use biometrics
mainly.
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Abstract. The best known algorithm computes the sensitivity of a given
spaced seed on a random region with running time O((M +L)|B|), where
M is the length of the seed, L is the length of the random region, and
|B| is the size of seed-compatible-suffix set, which is exponential to the
number of 0’s in the seed. We developed two algorithms to improve this
running time: the first one improves the running time to O(|B′|2ML),
where B′ is a subset of B; the second one improves the running time to
O((M |B|)2.236log(L/M)), which will be much smaller than the original
running time when L is large. We also developed a Monte Carlo algo-
rithm which can guarantee to quickly find a near optimal seed with high
probability.

Keywords: homology search, spaced seed, bioinformatics.

1 Introduction

The goal of homology search is to find similar segments or local alignments be-
tween biological molecular sequences. Under the framework of match, mismatch,
and gap scores, the Smith-Waterman algorithm guarantees to find the global op-
timal solution. However, the running time of the Smith-Waterman algorithm is
too large to be used on real genome data.

Many programs have been developed to speed up the homology search, such as
FASTA [11], BLAST [1,2,16,14], MUMmer [8], QUASAR [5], and PatternHunter
[12,9]. BLAST (Basic Local Alignment Search Tool) is the most widely used
program to do homology search. The basic idea of BLAST is that by using a
length 11 seed, which requires that two sequences have locally 11 consecutive
matches, local matches can be found, and a reasonably good alignment can be
then generated by extending those local matches. However, Li et al [12] found
that the homology search sensitivity can be largely improved if long “gapped”
seeds are used instead of short “exact” seeds. PatternHunter is developed based
� Corresponding author.
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on long “gapped” seeds. PatternHunter applies a dynamic programming (DP)
based algorithm to compute the hit probability of a given seed. We refer the
algorithm to compute the sensitivity of a seed in PatternHunter as the PH
algorithm.

The running time of the PH algorithm is dominated by the product of the
length of random region and the size of seed-compatible-suffix set. In [9], Li et
al proved that computing the hit probability of multiple seeds is NP-hard. In
[10], Li et al further proved that computing hit probability of a single seed in a
uniform homologous region is NP-hard.

The problems of computing the sensitivity of a given spaced seed and finding
the most sensitive pattern have been studied for a long time. Choi and Zhang
and coworkers [7,13] studied the problem of calculating sensitivity for spaced
seeds from computational complexity point of view, and proposed an efficient
heuristic algorithm for identifying optimal spaced seeds. Choi et al. [6] found
that an optimal seed on one sequence similarity level may not be optimal on
another similarity level. Yang et al. [15] proposed algorithms for finding optimal
single and multiple spaced seeds. Brejova et al. [3] studied the problem of finding
optimal seeds for sequences generated by a Hidden Markov model. Brown [4]
formulated choosing multiple seeds as an integer programming problem, and
gave a heuristic algorithm. So far, the PH algorithm is still the best running time
algorithm for calculating sensitivity of a given spaced seed. And most algorithms
for finding the optimal seed can not give any guarantee on the performance.

Here, we develop two algorithms to improve the PH algorithm for some cases.
The first algorithm improves the PH algorithm when the size of seed-compatible-
suffix set is large, while the second algorithm improves PH algorithm when the
region length is large. We further develop a Monte Carlo algorithm which can
guarantee to quickly find the optimal seed with high probability.

2 Preliminaries

2.1 Notations and Definitions

The notations are largely followed from those in [9].
Denote the i-th letter of a string s as s[i−1]. The length of s is denoted as |s|.

A spaced seed a is a string over alphabet {1, 0}. Denote M = |a|. For a spaced
seed a, we require a[0] = 1 and a[M − 1] = 1. The number of 1’s in a is called
the weight of a, here denoted as W . A 1 position in a means “required match”,
while a 0 in a means “do not care”.

A homologous region R with length L is defined as a binary string, in which
a 1 means a match and a 0 means a mismatch. In this paper, we only focus on
random homologous regions with uniform distribution. That is, Pr(R[i] = 1) =
p, 0 ≤ i ≤ L−1, where p is referred to as similarity level of R. For a spaced seed
a and a homologous region R, if there ∃ j, 0 ≤ j ≤ L − M , such that whenever
a[i] = 1, we have R[j + i] = 1, then we say that a hits region R.

This paper studies the following two problems:
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1. Seed Sensitivity: Given a spaced seed a, and a homologous region R ,
what is the probability of a hitting R? This probability is referred to as the
sensitivity of this seed on the region R. We just call it sensitivity of R if the
context is clear.

2. Optimal Seed: Given a seed length M and weight W , and a homologous
region R with similarity level p, what is the seed with the highest sensitivity?
A seed with the highest sensitivity is called an optimal seed.

2.2 Reviews of the PatternHunter Algorithm for Seed Sensitivity

Li et al [9] developed a dynamic programming based algorithm to compute the
sensitivity of a given seed.

For a seed a of length M and weight W , we call a string b compatible with a
if b[|b| − j] = 1 whenever a[|a| − j] = 1 for 0 < j ≤ min{|a|, |b|}. Suppose the
random region R has length L, and similarity level p. For a binary string b, let
f(i, b) be the probability that seed a hits region R[0 : i − 1] which has b as the
suffix of R[0 : i − 1]. Generally, we are only interested in the case 0 ≤ |b| ≤ M .
There are two cases: 1) the position before b has value 0; and 2) the position
before b has value 1. Thus, f(i, b) can be recursively expressed as:

f(i, b) = (1 − p)f(i, 0b) + pf(i, 1b) (1)

This will generate a O(L2M ) dynamic programming algorithm because length
of b is at most M . However, since the only case seed a can hit the “tail” of a
region R is that the suffix of the region R is compatible with seed a, instead
of considering all possible suffixes, they only consider those suffixes which are
compatible with a.

Define B to be the set of binary strings that are not hit by a but compatible
with a. Let B(x) denote the longest proper prefix of x that is in B. The PH
algorithm thus uses the following recursion function:

f(i, b) = (1 − p)f(i − |b| + |b′|, 0b′) + pf(i, 1b) 0b′ = B(0b). (2)

It is clear that any entry in the dynamic programming table depends on two
previously computed entries. Therefore, PH algorithm has to consider all the
possible b ∈ B for each i, 0 ≤ i ≤ L − 1. The size of B is bounded by M2M−W .
The running time is thus O((M + L)M2M−W ). However, the size of B can be
reduced.

In this paper, we improve the PH algorithm from two perspectives:

– Instead of considering all possible suffixes b ∈ B, we consider only a small
subset of B, which will result in an algorithm with a better running time
when |B| is large. That is, following the similar idea applied by PH algorithm,
we further reduce the number of suffixes needed.

– We reduce the factor L in the running time of PH algorithm to log L, which
will generate an algorithm with much better running time when L is large.
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3 Suffix-Recursion-Tree Algorithm

3.1 Algorithmic Details

The basic idea of our suffix-recursion-tree (SRT) algorithm is that if we pre-
compute more steps of the recursion function Eq. 2 instead of only one step, we
may have a small suffix set B′, s.t. any suffix b ∈ B′ is a recursive function of
only these suffixes from B′, which has the size much smaller than B. Recall that
the sensitivity is stored in entry (L, ε). Thus, we require ε in B′. The SRT of a
spaced seed is a tree with root node being labeled as ε, and each node of the tree
is labeled with b ∈ B. The label of the left child of any node b′ is B(0b′), where
B(0b′) is the longest prefix of 0b′ that belongs to B; and the label of the right
child of b′ is 1b′. If 1b′ is comparable with a and have the same length as seed a,
then 1b′ is “hit” by the seed a, and the corresponding node is labeled as “hit”.
The SRT is built by a depth first search. A node is a leaf only if 1) b is labeled
as a “hit”, or 2) the label b has been occurred before. Fig.1 shows an example
of the SRT of the spaced seed 1101011.

Fig. 1. An Illustration of Suffix-recursion-tree of seed 1101011

As shown in Fig.1, there are only three suffixes that recur more than once,
ε, 011, 01111. Thus, B′ = {ε, 011, 01111}. Note that the depth of the suffix-
recursion-tree is M . For any node in the tree, it depends on its left child with
probability (1 − p), while p on its right child, if the children exist. Each path
from a node v to its ancestor u represents the probability that u depends on
v. Thus, f(i, ε) can be expressed only by those circled entries. Similarly, we can
get a recursive relation for each internal node v on all the leaves of the subtree
rooted at v. The dependency of b on all b′ ∈ B′ is thus presented in the sub-tree
rooted at b, and the depth of the sub-tree rooted at b is at most M − 1. Thus,
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by building this SRT, a set of new recursion functions can be found that only
depends on a small suffix set B′.

By applying dynamic programming on this new recursion function, we have a
new algorithm for computing the sensitivity of a single spaced seed on a random
region. First, we construct the SRT for a given seed. Second, we deduce the
recurrence relations. Third, we do a dynamic programming based on this set of
new recurrence relations. Lastly we output the sensitivity.

Algorithm SRT-DP

Input Seed a, similarity level p, and region length L.
Output Sensitivilty of seed a on a random region of length L at similarity level p.

1. Construct the SRT of the seed a, and build set B′

2. Deduce all the recursive equations for every b′ ∈ B′.
3. For i ← 0 . . . L
4. For b′ ∈ B′ with decreasing lengths
5. Compute f(i, b′) by the recursive equations from Step 2.
6. Output f(L, ε)

Fig. 2. Algorithm SRT-DP

Theorem 1. Let a be a spaced seed and R be a random region. Algorithm SRT-
DP computes Pr(a hits R) in O(|B′|2ML+ |B|) time, where M is the length of
seed a, and B′ is the suffix subset determined by the suffix-recursion-tree of seed
a.

Proof. The correctness of the algorithm comes from the discussion before the
theorem. Line 1 can be done by depth first search. Since each node is determined
by its two direct children from Eq. 2, and once the node is traversed, the depth
first search will stop if the node recurs somewhere else, the running time is thus
O(|B|). Line 2 can be done in O(|B|), which is the size of the tree. After pre-
computing, line 3 to line 5 takes O(|B′|2ML) running time because for each
entry in the dynamic programming table, it depends on at most M |B′| entries.
Therefore, the total running time for the algorithm SRT-DP is O(|B′|2ML+|B|)

��

3.2 A Concrete Example

In this section, we will give a concrete example to show our algorithm has a
much better running time than the PH algorithm on some cases. First, we prove
the following results.

Lemma 1. Any suffix b ∈ B′ of any spaced seed can be either ε or a binary
string starting with 0. That is, any b ∈ B′ can not start with 1.

Proof. By contradiction. Suppose there is a b ∈ B′ that starts with 1, i.e. b = 1b′.
That means 1) b has occurred more than once, and 2) b′ is a suffix in B, and b′
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is the parent of b. Considering any two places where b occurs, at each place, b′ is
the parent of b. Thus, b′ has also occurred at least twice in the suffix-recursion
tree. For the definition of the suffix-recursion tree, the tree should stop at one
b′, which contradicts with b is a child of this b′.

Therefore, any suffix b ∈ B′ can be either ε or a binary string starting
with 0. ��
Recall that the running time of PH algorithm is O((M + L)|B|), in which |B|
can be as large as O(M2M−W ). From lemma 1, we know B′ is a subset of B,
the size of which is much smaller than B, because all suffixes starting with 1 in
B will not be in B′. Furthermore, we construct a simple example illustrate that
the algorithm SRT-DP is much better than PH algorithm. Better examples are
available, but it is out of the scope.

10 11 · · · 11︸ ︷︷ ︸
m3+(m−1) 1′s

0 · · · 11 · · · 11︸ ︷︷ ︸
m3+1 1′s

0 11 · · ·11︸ ︷︷ ︸
m3 1′s

(3)

For a seed as shown in Eq. 3, there are m 0’s in a. The size of B for this case
is:

|B| = m3 + 2 + (m3 + 1) × 2 + 4 + · · · + (m3 + m − 1) × 2m−1 + 2m + 2m

=
m∑

i=1
2i +

m−1∑

i=0
m32i +

m−1∑

i=0
i2i + 2m

= (2m+1 − 2) + m3(2m − 1) + (m2m − 2m+1 + 2) + 2m

= (m3 + m + 1)2m − m3

Lemma 2. Any suffix b ∈ B′ of our seed a can be either ε or a binary string
starting with 0 and followed by 1’s and at most one 0.

Proof. From lemma 1, we know that the only possible suffix b ∈ B′ of seed a can
be either ε or a binary string starting with 0. By contradiction, suppose there is
a suffix b ∈ B′ which starts with 0 and followed by at least two 0’s.

From the definition of B′, b should be compatible with the seed a. Thus, the
0’s in b which follows the first 0 have to be matched to some 0’s in a.

a : 10 · · · 11 · · ·11 011 · · ·11 011 · · ·11011 · · ·11 011 · · ·11
1 2

b : 011 · · ·11 011 · · ·11111 · · ·11 011 · · ·11

Recall that any suffix b ∈ B′ is generated by taking the longest compatible pre-
fix of some 0b′. Thus, b in the above figure is the result of cutting the tail of some
binary string. Thus, there are two different pairs of 0’s in a, which have the same
distance between each other. Suppose the first pair of 0’s (position 1 and position
2 in seed a) contains region 11 · · · 11︸ ︷︷ ︸

l1+(n1−1) 1′s

0 11 · · ·11︸ ︷︷ ︸
l1+(n1−2) 1′s

0 · · · 11 · · · 11︸ ︷︷ ︸
l1+1 1′s

0 11 · · ·11︸ ︷︷ ︸
l1 1′s

,

and the second pair of 0’s (position 1 and position 2 in suffix b) contains region
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which corresponds to the region 11 · · ·11︸ ︷︷ ︸
l2+(n2−1) 1′s

0 11 · · ·11︸ ︷︷ ︸
l2+(n2−2) 1′s

0 · · · 11 · · ·11︸ ︷︷ ︸
l2+1 1′s

0 11 · · ·11︸ ︷︷ ︸
l2 1′s

in seed a. Note here n1 ≤ m and n2 ≤ m. Since the distances between these two
pairs are the same. We have

l1+(l1+1)+· · ·+(l1+n1−1)+(n1−1) = l2+(l2+1)+· · ·+(l2+n2−1)+(n2−1)

From this equation, we have

(2l1 + n1 + 1)n1 = (2l2 + n2 + 1)n2
2(l1n1 − l2n2) = (n2 + 1)n2 − (n1 + 1)n1

From the construction of the seed a, for any i, we have li = m3 + j, where
0 ≤ j ≤ m − 1. If n1 and n2 are different, without loss of generality, assume
n1 > n2. Let n1 = n2 + h, where h ≥ 1. The left part of the above equation is
then:

2(l1n1 − l2n2)
= 2[(m3 + j1)(n2 + h) − (m3 + j2)n2]
= 2[m3h + j1(n2 + h) − j2n2]
≥ 2(m3h − m2)
≥ m3 (when m ≥ 2)

Thus, the absolute value of the left part of the above equation is at least m3,
while the right part is at most m2. Thus, n1 = n2, and l1 = l2. This contradicts
to the assumption that these two regions are different.

Therefore, any suffix b ∈ B′ of seed a can be either ε or a binary region
starting with 0 and followed by 1’s and at most one 0. ��

Combining lemma 1 and lemma 2, the number of suffixes b ∈ B′ for seed a is at
most:

m +
(
m
2

)

= O(m2)

In this seed a, the total length M is m4 + m2

2 + m
2 + 1.

Therefore, the total running time for the algorithm SRT-DP is O(|B′|2ML +
|B|) = O(m8L + m32m), while the running time for PH algorithm is O((M +
L)|B|) = O(m72m + Lm32m). The dominant term here is L or 2m. Thus, the
SRT-DP algorithm is much faster than PH algorithm because it is the sum of
the two dominant terms instead of the product of them.

4 Block-Matrix Algorithm

Now, we develop another algorithm to solve the problem of calculating the sen-
sitivity of a given seed, which mainly handle the case when the length of the
homology region is long.

Recall Eq. 2, in which 0b′ is the longest prefix of 0b in B. Any entry in the
dynamic programming table depends on only two previously computed entries.
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Fig. 3. An Illustration

For any b ∈ B, |b| − |b′| is bounded by M . Thus, if we divide random region R
into blocks, each of which has length M , all entries in one block will only depend
on entries from itself or entries from another block. Fig. 3 shows an illustration
of dividing region R into blocks.

For any entry in block 1, it depends on two previously computed entries in
block 1. Thus, all entries in block 1 can be pre-computed by only using entries
from itself. For an entry in block 2, it depends on only two entries, one of which
must be in the same column as this entry in the same block (corresponding to
f(i, 1b)). For the other dependent entry, there are two cases: 1) the entry is also
in block 2 (as point C in Fig.3); and 2) the entry is in block 1 (as point A in
Fig.3). In either case, the entry has been computed already. Let F (i, j) denote
the dependency relationship of block i on block j and i. From previous discussion,
we can easily compute F (1, 1) and F (2, 1). Thus, for any entry in block 3, we
can consider block 3 as block 2, and block 2 as block 1, then use F (2, 1) on the
entry. Clearly, F (3, 2) is the same as F (2, 1). If we further substitute any entry
in block 2 used in F (3, 2) by its F (2, 1) relationship, we can have a dependency
relationship between any entry in block 3 and entries in block 1 and block 3, i.e.
F (3, 1). For any entry in block 5, we can apply F (3, 1) twice, which will result
in F (5, 1). Generally speaking, assume L = (1 + 2r)M , we can apply this idea
to reduce the region length dimension of the dynamic programming, L, to log L
by using the algorithm shown in Fig.4.

We now analyze the running time of this algorithm. Line 1 is just for illustra-
tion purpose, in practice, we don’t need to divide R into blocks, instead we just
need to compute [i/M ] + 1 for a given index i; line 2, 3, and 4 can be done in
O(M |B|); line 5 can be done in O(M |B|) because each entry in block 2 depends
on only 2 other entries from block 1 or block 2.

Theorem 2. The Block-matrix Algorithm has a running time O((M |B|)2.236

log(L/M)).

Proof. If an entry in block (1+2i) depends only on previously computed entries
in the same block, the algorithm takes O(M |B|) running time. Thus, we can
assume an entry in block (1+2i) depends on entries in block (1+2i−1) by using
previously computed F (1 + 2i−1, 1). Let ai, i = 1 . . .M |B| denote all entries
in block 1 with the condition that an entry with smaller line index is indexed
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Block-matrix Algorithm

Input Seed a, similarity level p, and region length L.
Output Sensitivilty of seed a on a random region R of length L at similarity level p.

1. Divide length L into blocks, each of which has length M . Index these blocks
as block 1, block 2, . . . , block 1 + 2r.

2. For i ← 0 . . . M − 1
3. For b ∈ B with decreasing lengths
4. Compute f(i, b) by the recursive function Eq. 2.
5. Compute F (2, 1).
6. For i ← 1 . . . r
7. Compute F (1 + 2i, 1) by using F (1 + 2i−1, 1).
8. Output f(L, ε)

Fig. 4. Block-matrix Algorithm

before any entry with larger line index, and an entry with smaller column index
is indexed before any entry with larger column index and the same line index.
Let bi, i = 1 . . .M |B| and ci, i = 1 . . .M |B| denote all entries in block (1 + 2i−1)
and (1 + 2i), respectively, with the same indexing rule as ai. Thus, any bj is a
linear combination of all ai, and any ck is a linear combination of all bj. That
means:

bj =
M|B|∑

i=1

wjiai

ck =
M|B|∑

j=1

w′kjbj

Note that F (1 + 2i, 1) is the same as F (1 + 2i−1, 1), because (1 + 2i) − (1 +
2i−1) = (1 + 2i−1) − 1 = 2i−1. Thus, wij = w′ij .

Thus,

ck =
M|B|∑

j=1
wkjbj =

M|B|∑

j=1
wkj

M|B|∑

i=1
wjiai =

M|B|∑

j=1

M|B|∑

i=1
wkjwjiai.

This means that the dependency relationship between any ck and all ai can
be calculated by matrix multiplication. Thus, the running time for line 6 and 7
is bounded by O((M |B|)2.236).

Therefore, the total running time of Block-matrix algorithm is O((M |B|)2.236

log(L/M)). ��

It’s not difficult to extend our algorithm when L is not in (1 + 2r)M format.
Recall the running time of PH algorithm is O((M + L)|B|), our Block-matrix
Algorithm can provide a much better running time if L is large.
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5 Monte Carlo Algorithm for Finding Optimal Seed

In this section, we propose a Monte Carlo algorithm to solve the optimal seed
problem. Given seed length M , weight W , a random region R of length L with
distribution Pr(R[i] = 1) = p, 0 ≤ i ≤ L − 1, we want to find a seed a of good
enough sensitivity with high probability. The deterministic algorithm for finding
the optimal seed has a running time of O(

(
M
W

)
(M + L)|B|). Here, we provide a

O((k
(

M
W

)
M + t|B|)L) Monte Carlo algorithm that can find a near-optimal seed

with high probability, where k and t are parameters to adjust the errors of the
sensitivity and to control the probability.

The intuition behind our algorithm is that if we randomly generate k binary
regions of length L with similarity level p, the number of hits for a seed a on
these regions will be relevant to the sensitivity of a. The higher the sensitivity
is, the more expected hits are. The outline of the algorithm is displayed in Fig.5.
First, we randomly generate k regions. Then we count the occurrence of each
pattern. If a seed occurs multiple times in a random region, it counts only once.
After that, we select top t patterns with the largest numbers of occurrences.
Lastly, we employ an deterministic algorithm to compute the sensitivity of the
t seeds, and output the seed with the highest sensitivity.

Monte Carlo Algorithm for Finding Optimal Seed

Input Integer M , W , similarity level p, and random region R of length L.
Output A seed a of length M, weight W with the highest sensitivity on R.

1. Randomly generate k binary regions with similarity level p.
2. For each possible binary pattern a′ of length M and weight W .

2.1 Let cnt[a′] be the number of random regions that contain a′.
3. Let C be the set of t patterns with largest cnt values, ties break randomly.
4. Compute the sensitivity of the patterns in C by a deterministic algorithm.
5. Output the pattern with the highest sensitivity in C.

Fig. 5. Monte Carlo Algorithm for Finding Optimal Seed

Theorem 3. The running time for the algorithm in Fig. 5 takes time O((k
(

M
W

)

M + t|B|)L)

Proof. Step 1 takes O(kL). The running time of step 2 is (kML
(
M
W

)
). The run-

ning time for step 3 is dominated by step 2. Step 4 takes O(t(M + L)|B|) if HP
algorithm is used to compute the sensitivity of a single seed. Thus, the overall
running time is: O((k

(
M
W

)
M + t|B|)L). ��

We further estimate the probability that the Monte Carlo algorithm can find
out the optimal seed. Let so be the sensitivity of an optimal seed on the ran-
dom region R, s be the sensitivity of the seed on R found by our Monte Carlo
algorithm. We have the following results:
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Theorem 4. The Monte Carlo algorithm ensures so−s ≤ ε with high probability

1 − e−
ε2

3(1−ε) kt. If kt ≥ 3(1−ε)
ε2 log 1

σ , the Monte Carlo algorithm can guarantee to
find out an optimal seed with probability 1 − σ.

Proof. Define three random variables: C, Co, and X . C is the sum of Ci which
is defined to be the number of hits of a seed found by our algorithm on random
region i, (values can be 0 or 1 with probability 1 − s and s, respectively));
Co is the sum of Coi which is defined to be the number of hits of an optimal
seed on random region i, (values can be 0 or 1 with probability 1 − so and so,
respectively); X is the sum of Xi which is defined to be Ci − Coi + 1, (values
can be 0, 1, 2 with probability (1 − s)so, sso + (1 − s)(1 − so), and s(1 − so),
respectively). Since the number of random regions is k, X > k means the real
number of hits of the optimal seed is smaller than the number of hits of an
arbitrary seed. Let T denote the set of the indices of the top t seeds chosen by
our Monte Carlo algorithm.

Since both so and s lay in [0, 1], we can assume that when k and t are large
enough, our algorithm can find out seeds with so − s < 0.5. Let Ci be random
variable C for seed i. Thus,

Pr(an optimal seed is in top t seeds)=1−Pr(no optimal seed is in top t seeds)
= 1 − Pr(Co is smaller than Ci, i ∈ T )
= 1 −

∏

i∈T

Pr(Co is smaller than Ci) (because of independency)

We now compute Pr(Co is smaller than Ci) by Chernoff bounds. For 0 <

δ ≤ 1, Pr(X ≥ (1 + δ)μ) ≤ e−μδ2/3, where X is the sum of independent Poisson
trials, and μ = E[X ]. It is obvious that Xi = Ci −Coi +1 is independent Poisson
trials. Thus,

μ = E[X ] = k{0 × (1 − s)s0 + 1 × [ss0 + (1 − s)(1 − so)] + 2 × (1 − s0)s}
= (1 + s − so)k

Let (1 + δ)μ = k, we get δ = k
μ − 1 = so−s

1+s−so
.

By Chernoff bounds, we have

Pr(Co is smaller than Ci) = Pr(X ≥ k)

≤ e
−(1+s−so)k (so−s)2

3(1+s−so)2 = e−
(so−s)2

3(1+s−so) k

Let ε = so − s, we have Pr(Co is smaller than Ci) ≤ e−
ε2

3(1−ε) k.
Thus, the probability that our Monte Carlo algorithm guarantees to find out

an optimal seed is:

Pr(an optimal seed is in top t seeds) = 1 −
∏

i∈T

Pr(Co is smaller than Ci)

≥ 1 − (e−
ε2

3(1−ε) k)t = 1 − e−
ε2

3(1−ε) kt

Thus, when k and t increases, the probability increases quickly. If we require
the probability that our Monte Carlo algorithm fails to find out an optimal
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seed is smaller than σ, 0 < σ < 1, we can have the requirement on k and t:
kt ≥ 3(1−ε)

ε2 log 1
σ . ��
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Abstract. The confidential access to medical images becomes signifi-
cant in recent years. In this paper, we propose two types of region-based
selective encryption schemes to achieve secure access for medical images.
The first scheme randomly flips a subset of the bits belonging to the coef-
ficients in a Region of Interest inside of several wavelet sub-bands, which
is performed in compression domain but only incurs little loss on com-
pression efficiency. The second scheme employs AES to encrypt a certain
region’s data in the code-stream. The size of encrypted bit-stream is not
changed and there is no compression overhead generated in the second
scheme. Moreover, both of two schemes support backward compatibility
so that an encryption-unaware format-compliant player can play the en-
crypted bit-stream directly without any crash.

Keywords: Medical Imaging, Selective Encryption, Region of Interest,
Bit Flipping, Quality Layer Organization.

1 Introduction

The organization of today’s health systems often suffers from the fact that dif-
ferent doctors do not have access to each others patient data. The enormous
waste of resources for multiple examinations, analysis, and medical check-ups is
an immediate consequence. In particular, multiple acquisition and related pri-
vate rights of medical image data should be protected. An obvious solution to
these problems is to create a distributed database system where each doctor
has his/her own digital access to the existing medical data related to a patient.
Hence, there is an urgent need to provide the confidentiality of medical image
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data related to the patient when medical image data is stored in databases and
transmitted over networks.

The medical image data is different from other visual data for multimedia
applications. Since the lossy data may cause some negative misdiagnosis, it is
constrained by the fact that a diagnosis should be based on a lossless compressed
image which holds a much larger amount of data than the lossy compressed
image. A possible solution to this problem is to use selective compression where
parts of the image that contain crucial information are compressed in a lossless
way whereas regions containing unimportant information are compressed in a
lossy manner. Fortunately, the JPEG2000 still image compression standard [17]
provides a significant feature called Region of Interest (ROI) coding, which allows
both lossless and lossy compression in one image. Also, the lossless encoded part
can be decoded or reconstructed first.

The JPEG2000 is an emerging research field for medical imaging. Many tech-
niques are exploited to create efficient encryption schemes based on JPEG2000.
Scrambling of the codewords on the compressed bit-stream proposed in [1,4]
is often computed with low complexity, but cannot provide high security. The
permutations on wavelet coefficients [9,13] can be simply implemented. How-
ever, these techniques might cause some efficiency losses in the subsequent en-
tropy coding. Wavelet domain based encryption schemes proposed by Uhl et al.
[3,5,10] only protect the wavelet filters or wavelet packet structures. The en-
crypted data of these wavelet-based algorithms is lightweight but the security
cannot be totally confirmed. Since some parameters or structures are encrypted,
the actual coefficients values are still plaintext. A selective encryption scheme
for JPEG2000 bit-stream is introduced by Norcen et al. [8], which encrypts 20%
of the compressed bit-stream. Whereas Lian et al. [6] proposed a scheme to en-
crypt some sensitive data in frequency sub-bands, bit-planes or encoding-passes
selectively, the total encrypted data is no more than 20%.

These techniques described so far achieve that the whole image is distorted.
However, for the selective compressed medical images, especially in radiography
and biomedical imaging, encryption in the spatial domain of the whole image is
unnecessary to some extent.

Our Contributions. In this paper, we propose two types of schemes for region-
based selective encryption of medical images, which concentrate on the security
of crucial parts in medical images. The first scheme randomly invert the most sig-
nificant bits of ROI coefficients in several high frequency sub-bands in the trans-
form domain. This scheme is simply implemented and low complex-computed,
and further, has little compression overhead. The second scheme employs AES
cipher as the basic cryptographic building block to selectively encrypt the ROI
data in the final code-stream, which provides sufficient confidentiality and can be
used for medical image storage. Furthermore, our proposed schemes are back-
ward compatible so as to ensure a standard bitstream compliant decoder can
reconstruct the encrypted images without any crash. Note that, throughout the
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paper, we assume that an existing key management protocol is used to distribute
the key, and we focus on how the key is used to achieve secrecy.

The remainder of the paper is organized as follows. In Section 2, we review
the coding mechanism of JPEG2000 and ROI coding. Section 3 presents the
proposed schemes for region-based selective encryption of medical images. The
experimental results are shown and analyzed in Section 4. We discuss the security
and efficiency of our schemes in Section 5. Finally, we conclude the paper in
Section 6.

2 Preliminaries

In general, wavelet-based image processing methods have gained much attention
in the biomedical imaging community. Applications range from pure biomedical
image processing techniques such as noise reduction, image enhancement to com-
puted tomography (CT), magnetic resonance imaging (MRI), and functional im-
age analysis [14]. Image compression methods that use wavelet transforms have
been successful in providing high compression ratios while maintaining good im-
age quality. The JPEG2000 is not only one of the most popular standard, but
might be also widely applied in medical imaging in the near future.

2.1 The Coding Mechanism of JPEG2000

The JPEG2000 image coding standard is based on a scheme originally proposed
by Taubman, which is known as Embedded Block Coding with Optimized Trun-
cation (EBCOT) [11].

In JPEG2000, the Discrete Wavelet Transform (DWT) is firstly applied to
the original image to decompose into different resolution levels. The sub-bands
in each resolution level are partitioned into smaller non-overlapping rectangu-
lar blocks called code-blocks. The wavelet coefficients inside a code-block are
processed from the most significant bit-plane (MSB) towards to the least signif-
icant bit-plane (LSB). Furthermore, in each bit-plane the bits are scanned in a
maximum of three passes called coding passes. Finally, during each coding pass,
the scanned bits with their context value are sent to a context-based adaptive
arithmetic encoder that generates the code-block’s bitstream.

The rate-distortion optimal merging of these bit-streams into the final one is
based on a sophisticated optimization strategy. This last procedure carries out
the creation of the so-called layers which roughly stand for successive qualities
at which a compressed image can be optimally reconstructed. These layers are
built in a rate-allocation process that collects, in each code-block, a certain
number of coding-passes codewords. Hence, the final JPEG2000 code-stream is
organized from the embedded contributions of each code-block with the formal
syntax information to depict the bit-stream structure. If an ROI is defined in
JPEG2000, its information may appear in the front of the code-stream or the
earlier quality layers.
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2.2 Region of Interest Coding

The ROI coding scheme in part I of JPEG2000 standard [2,17] is based on coef-
ficients scaling. An ROI mask is generated in each wavelet sub-band to identify
the ROI coefficients as shown in Fig.1. The principle of ROI coding is to scale
(shift) coefficients so that the bits associated with the ROI are placed in higher
bit-planes than the bits associated with the background. During the embedded

Fig. 1. ROI Mask Generation

coding process, the most significant ROI bit-planes are placed in the bit-stream
before any background bit-planes of the image (Note that some bits of ROI co-
efficients might be encoded together with non-ROI coefficients). Thus, the ROI
will be decoded, or refined, before the rest of the image. If the bit-stream is
truncated, or the encoding process is terminated before the whole image is fully
encoded, the ROI will be of higher fidelity than the rest of the image [12].

3 Region-Based Selective Encryption

In this section, we present two types of region-based selective encryption schemes
to provide the security of crucial part in medical images. Generally, the multime-
dia encryption can be performed before, in the middle of, or after the compres-
sion. Regarding the first way, encryption will destroy the strong correlation and
statistical information of multimedia data. Therefore, most encryption schemes
are applied within or after compression [16]. We also follow this principle to
construct our schemes.

3.1 Scheme-I: Encryption During Compression

The first region-based selective encryption scheme is addressed during compres-
sion. In particular, the encryption is performed in the transform-domain. The
main idea is to mask a pseudo-random noise which can be implemented by
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randomly inverting some most significant bits of ROI coefficients belonging to
certain wavelet sub-bands. As mentioned in Section 2, ROI masks are generated
in each wavelet sub-band to identify the ROI coefficients after quantization.
And then, the bit-planes belonging to ROI are upshifted to a maximum value
which has the largest magnitude of the background coefficients. Finally, the bit
inverting is operated after bit-plane upshifting.

The encryption should have a minimal impact on compression efficiency. As
the wavelet coefficients are strongly correlated, encrypting all bits of the coef-
ficients would reduce coding efficiency. However, the sign bits of wavelet coeffi-
cients are typically weakly correlated, and appropriate for inverting. Also, since
the most significant bits of each coefficient holds the most important informa-
tion, encryption of them can achieve the fuzziest visual quality. Furthermore, the
lowest frequency sub-band (LL-band) reserves larger energy and statistical in-
formation of the image than other sub-bands, hence we only consider protecting
the sub-bands in high frequency level.

In Scheme-I, the quantized wavelet coefficients belonging to high frequency
sub-bands and corresponding to the ROI are encrypted by randomly inverting
their sign bits and some most significant bits. Note that this method modifies
few bits of each ROI coefficients and can be performed on-the-fly during entropy
coding. A Pseudo Random Number Generator (PRNG) is used to drive the
flipping process, characterized by its seed value. Thus, for each coefficient, a new
pseudo-random value (one-bit value) is generated. If this value is 1, the related
bit is inverted. Otherwise, the bit is left unchanged. The amount of inverted
bits can be adjusted by restricting the inversion to fewer wavelet sub-bands. It
should be noticed that the seed value represents the encryption key, which is the
only information we need to protect.

With above scheme, encrypted regions can have arbitrary shapes. The shape
of the ROI has to be available at both the encoder for flipping and decoder
for inversely flipping. The shape information can be transmitted in a separate
channel or implicitly embedded using the ROI mechanism of JPEG2000.

3.2 Scheme-II: Encryption After Compression

The second region-based selective encryption scheme is performed after com-
pression, i.e., encryption on the compressed data. We exploit the flexible quality
layer mechanism in JPEG2000 standard to selectively encrypt ROI. Each quality
layer has a collection of contributions from all the code-blocks. The first layer is
formed from the optimally truncated code-block bit-streams such that the target
bit-rate achieves the highest possible quality in terms of minimizing distortion.
Accordingly, the compressed ROI data in the first quality layer is encrypted in
Scheme-II.

Since the medical images always have a large amounts of data, public key
techniques are not suitable for them. Therefore, we employ a symmetric block
cipher as the basic cryptographic building block to construct our second scheme.
Especially, the Advanced Encryption Standard (AES) is a recent symmetric
block cipher which is used in most applications for providing confidentiality.
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We make use of AES with Cipher Feed Back (CFB) mode which satisfies the
requirement for encryption of arbitrary sized data.

The basic encryption cell is the contribution of each ROI code-block to the
first quality layer. In order to achieve format compliance, we need to only encrypt
the purely compressed data and leave the syntax information of the code-stream
untouched. Parsing and extracting for the necessary information from the code-
stream must have high computational complexity, hence they cause much han-
dling time. To avoid these overhead, we encrypt ROI data with synchronizing
the rate allocator, which can be applied directly after the optimal rate-distortion
calculation of each code-block, but before writing the code-block’s codewords to
each quality layer. It is worthily mentioned that in case there is only one ROI
coefficient in a code-block, this code-block should be identified as a ROI code-
block. That means the ROI boundary is aligned with code-blocks, but not exact
to each coefficient. Also, the identification of ROI code-blocks should be informed
to decryption side to correctly decrypt the ciphertext.

4 Experimental Results

4.1 Experimental Environments

The proposed schemes have been implemented based on the publicly available
JPEG2000 implementation JJ2000 (Version 5.1) [18]. The encryption is simu-
lated on following monochrome medical images: an ultrasound image (US), a
computer radiology chest image (CR), a computerized tomography image (CT)
and a magnetic resonance image (MRI). All of them are in gray level with 8 bit
per pixel (bpp) (see Table 1. for detailed information of these images). In our
experiments, we use the JPEG2000 default parameter settings: five-level DWT
decomposition, 64×64 code-blocks, 20-layers, layer progressive bitstream etc.

The peak signal to noise ratio (PSNR) was used for objective measure of the
image distortion. PSNR for an image with bit depth of n bits/pixel is defined as

PSNR = 10log10
(2n − 1)2

MSE

and MSE is given by

MSE =
∑

(x̂ − x)2

A
,

where x denotes the original pixel values, x̂ is the reconstructed pixel values, and
A is the area of ROI. In the following, ROI PSNR is used to measure the rate
distortion (RD) performance of ROI, while whole PSNR is used to assess the
background quality. Note that higher the PSNR values reveal the better quality
of images. Consequently, the lower PSNR values imply the higher security.

4.2 Experimental Results and Analysis

Our first experiment is implemented on Scheme-I: randomly flipping the bits
belonging to ROI coefficients. We independently encrypt the bits in each ROI
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Fig. 2. Comparison of ROI PSNR performance with encrypting different MSBs in each
resolution level

bit-plane related to each resolution level. Fig.2 illustrates the PSNR performance
of ROI in the reconstructed encrypted image with the first nine MSBs from the
ultrasound image, where the MSB-0 is the sign bit-plane. Only the high frequency
sub-bands are tested, i.e., the level-1 only includes HL1, LH1 and HH1 sub-
bands. We look for the low PSNR quality to make selective encryption secure in
Fig.2. It can be clearly noticed that image quality is low if we randomly flip the
bits in the first MSBs (except MSB-0), especially in the higher resolution levels.
However, inverting the sign bits results an opposite relationship to resolution
levels and has less degradation on image quality. The benefit of encrypting sign
bits is shown in the discussion of Fig.3.

We use the lossless encoding mode in order to test the file size changes which
explicitly indicate the compression efficiency overhead shown in Fig.3, with the
same parameters as Fig.2. The compression overhead is calculated by file size
increasing ratio. Obviously, sign bits encryption generates the least compression
overhead, particularly in lower resolution levels (Level 1-4) where the overheads
are almost close to zero. In addition, the overheads generated from encrypting
the lowest three resolution levels (Level 1-3) are no more than 0.5%, whereas
encryption of the highest level (Level 5) results the largest compression overhead.

There should be a good trade-off between the degradation of image visual
quality and compression efficiency overhead. Hence, depending on the previous
experimental results, randomly flipping of the bits belonging to the MSB-0 and
MSB-1 in resolution level 1-3 can achieve the compatible purpose of selective
encryption. The visual performance of the encrypted image is shown in Fig.4.

In the following, we implement our second scheme of ROI encryption. The
AES cipher is applied to encrypt ROI data in the first quality layer. Table 1.
shows the encrypted data ratio and ROI PSNR for different size medical images.
The ROI’s area is chosen as one-fifth of the whole image’s. We calculate the
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Fig. 3. Comparison of compression overhead with encrypting different MSBs in each
resolution level

PSNR value of both ROI and whole images, as well the encrypted data ratio.
Note that the ratio is calculated from the data we selectively encrypted to the
total ROI part, but not to the whole image.

(a) Original image (b) Encrypted image

Fig. 4. Visual quality of the reconstructed encrypted image US

In Table 1, We find that even though the encrypted data ratio is very low (less
than 2%), the degradation of PSNR performance is fairly large - almost less than
10dB. These two bounds can be sufficiently accepted in most security systems.
Also, the values in the second and fourth columns reveal that naive increasing of
the amount of encrypted data may not achieve a large degradation. For example,
comparing MRI and US images, the data ratio of MRI (1.258%) is lower but
it has a higher PSNR performance (10.002dB) than US’s (0.96%, 9.812dB).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



70 Y. Ou, C. Sur, and K.H. Rhee

Table 1. Encrypted Data Ratio with ROI as 20% of the Whole Image

Images ROI Whole Encrypted
and Size PSNR (dB) PSNR (dB) data ratio

MRI(1024 × 1024) 10.002 12.793 1.258%

US(1215 × 948) 9.812 12.396 0.960%

CT(1134 × 1133) 7.780 12.814 0.727%

CR(1275 × 1067) 6.347 11.353 1.393%

This case illustrates that there is no direct proportion between the amount of
encrypted data and the PSNR performance. Moreover, proper selection of the
crucial data to be encrypted is important for selective encryption. In our second
scheme, the employment of the quality layer organization in JPEG2000 helps us
to immediately and efficiently select the significant information to be encrypted.
The visual performance results of reconstructed MRI are shown in Fig.5.

(a) Original image (b) Encrypted image

Fig. 5. Visual quality of the reconstructed encrypted MRI

5 Discussions on Security and Efficiency

Security of multimedia encryption involves two different aspects. One aspect is
the visual effect, i.e., how much visual information leaks after encryption. An-
other aspect is the system security which means the robustness of the system
against cryptanalysis. Tolerance to visual content leakage and judgement of the
success of an attack depends on applications. For medical imaging system, con-
tent leakage is somewhat acceptable since an image with lower quality cannot
provide enough technical information to medical analysis and diagnosis. In the
following we will discuss the security of our schemes by conducting the simple
ciphertext-only attack.

The randomly bit-flipping in our first scheme is not sufficiently secure to error-
concealment attack. One way to conceal bit error (encrypted bits) is to replace
the error bits with a constant value, such as 0 or 1. Here we simulate that using 0
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(a) Recovered US image (b) Recovered MRI image

Fig. 6. Visual quality of the attacked recovered images

to replace all ROI MSB-0 and MSB-1 in resolution level 1-3 in order to attack our
encrypted image. It is simulated that the recovered images’ PSNR performance
is up to 20.22dB (Fig.6(a)), and the visual quality is correspondingly higher
than Fig.4(b). To avoid this attack, the bit-flipping can be combined with a
permutation algorithm to improve robustness against error-concealment attack
[15]. On the other hand, the larger space of the encryption key, i.e. the seed value
for PRNG in this scheme, can achieve a more robustness towards the brute-force
attack. As we mentioned at the beginning, we focus on how the seeds are used,
but the definition of a specific random number generation is outside the scope
of this paper. There are a lot of secure PRNGs are introduced until so far, and
we can use one of them properly depending on application purposes. In our
simulation, we present the seed value with 32 bits which allows to employ 232

different keys.
Our second scheme uses AES as the underlying cipher to selectively encrypt

the data in the first quality layer which holds the furthest optimized rate-
distortion. Obviously, the security of AES is indubitable. Since the bit-stream
values which are arithmetically decoded depend on earlier results, the constant
number-based replacement attack does not have the desired effect as discussed
above. However, the error resilience feature in JPEG2000 makes some sense to
attack this scheme. We insert an error resilience segmentation symbol in the
codewords at the end of each bit-plane. Decoders can use this information to
detect and conceal errors [7]. Fig.6(b) shows the visual performance of MRI
after using error resilience symbol (compared to Fig.5(b)). To enhance the secu-
rity of this scheme, an efficient way is to increase the bit-rate of the first layer,
i.e., implicitly increase the amount of encrypted data which has been optimized
allocated into the first layer.

Regarding on the efficiency of the proposed schemes, as mentioned in
Section 4, even though Scheme-I destroys some statistical information of the
original image, the compression overhead is less than 0.5%. Furthermore, the bit
inverting can be simply implemented and it has very low computational com-
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plexity. Nevertheless, using AES cipher incurs a little compression time overhead
in Scheme-II, but the output file size is not changed, also it is resistable against
several kinds of attacks. Consequently, Our schemes have their own advantages
and are suitable for different medical imaging systems.

6 Conclusion

In this paper, we have presented two novel region-based selective encryption
schemes for medical imaging. The first scheme is to randomly invert the first
two MSBs of ROI coefficients in wavelet transform domain. It can be efficiently
implemented and only incurs little compression efficiency overhead, also it can be
extended to other motion formats. The second scheme, selective encryption of the
compressed ROI data, provides a high level security and has no file size changes.
Both of them are format backward compatible and have their own advantages so
that they are applicable to different medical security imaging systems to satisfy
different requirements.
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Abstract. Nowadays, it is still the primary problem to find the in-
hibitors of retrovirus, protease and integrase in anti-AIDS drug design.
However, the research and experimental results about anti-AIDS in-
hibitors mainly exist in large numbers of scientific literature, not in read-
able format for computer. In this paper, we introduce an Ontology-based
Information Extraction (OIE) approach to extract anti-AIDS inhibitors
from literature. Key to the approach is the construction of anti-AIDS in-
hibitors ontology, which provides a semantic framework for information
extraction, and annotation of corpus. Consequently, this paper primarily
focuses on the architecture of OIE, on which we construct the anti-AIDS
ontology using Protégé tool and annotate corpus. Finally, we employ a
demonstrated application scenario to show how to annotate the PubMed
articles based on the ontology we have constructed.

Keywords: Information Extraction, Ontology, Annotation, anti-AIDS,
Inhibitor.

1 Introduction

Acquired Immune Deficiency Syndrome(AIDS) is caused by Human Immunode-
ficiency Virus (HIV) infection. Due to the lack of an effective vaccine to prevent
HIV infection, the development of efficacious anti-AIDS drugs is urgent in the
field of AIDS research. Currently, seeking and developing the new anti-AIDS
drugs with new structure types or new mechanism have been a hot issue in the
field of drug design recent years. Further more, there is a growing awareness
that governments all over the world give more and more financial support to the
anti-AIDS drug design related research work.
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The existing anti-AIDS drugs mainly work well in the following three tar-
gets, i.e., retrovirus, protease and integrase enzyme. The key factor of designing
a new drug always relies on looking for appropriate inhibitors in those targets
mentioned above. Nowadays, effective anti-AIDS inhibitors, mechanism of in-
hibitors and HIV, reciprocity among inhibitors in human body as well as HIV
resistance [1][2] have been reported in thousands of literature. Meanwhile, the
correlative literature is increasing rapidly. Hence, it is very expensive and time-
consuming for scientists to track the up-to-date progress of the fields they are
interested in. In short, how to extract information on inhibitors from immense
scientific literature is a very urgent issue for anti-AIDS drug designers.

The aim to information extraction is providing a more powerful information
access tool to help researchers overcome the challenge of information overloading.
Compared with information retrieval which is usually used to find the highest
ranked documents to match a user query, information extraction is to extract
specified information from a passage text, to produce well-formed output and to
deposit the results into a database. Information extraction is the comprehensive
application of a variety of natural language processing technology.

Research on ontology is becoming widespread in the computer science com-
munity. While in the past this terminology has been rather confined to the philo-
sophical sphere, it is now gaining a specific role in Artificial Intelligence, Compu-
tational Linguistics, and Database Theory. In particular, its importance is being
recognized in research fields as diverse as knowledge engineering[3][4][5], knowl-
edge representation[6][7][8], qualitative modeling[9], information modeling[10],
information retrieval and extraction[11][12] and so on. Ontology is an augmented
conceptual-model instance that serves as a wrapper for a narrow domain of in-
terest [13]. Ontology of anti-AIDS inhibitors will provide a model that can be
used to form a semantic framework for information extraction.

In this paper we present the Ontology-based Information Extraction approach
to extract anti-AIDS inhibitors from biological literature. While, key to this ap-
proach is the construction of anti-AIDS inhibitor ontology and the annotation of
corpus. Therefore, we chiefly focus on the ontology of anti-AIDS inhibitor and the
manual annotation of original corpus to fulfill this approach. The paper is orga-
nized as follows: Section 2 provides some information about related works and
projects. The architecture of OIE system, the ontology of anti-AIDS inhibitor and
the annotation of corpus are described in Section 3. Section 4 presents a case study
to show how to annotate the corpus using the ontology we have constructed. Fi-
nally, Section 5 draws the conclusion and points out the future work.

2 Related Work

At present, the application of information extraction in the biology, medicine
and chemistry research have been paid more and more attention in the in-
ternational and domestic research institutions. e-Science project in Cambridge
Molecular Information Center extracts the name and properties of compounds
from the chemical literature [14]. The primary task of GENIA project in Tsujii

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



76 C. Zhang et al.

laboratory of the University of Tokyo is to automatically extract useful informa-
tion from texts written by scientists to help overcome the problems caused by in-
formation overloading. They are currently working on the key task of extracting
event information about protein interactions [15][16][17]. The Gene Ways project
of Genome Center in Colombia University [18] extracts information about mole-
cular composition and the interaction between them. PennBioIE, the biomedical
information extraction project at the University of Pennsylvania, has developed
software named FABLE which provides biomedical researchers a way to more
thoroughly identify MEDLINE articles relevant to their interests. Currently, FA-
BLE assists with finding MEDLINE abstracts that mention gene(s), RNA(s) or
proteins(s), and the system is optimized for human genes and gene products[19].
In a word, their work all extract useful information from scientific literature.

Some domestic research institutes also do similar work,such as the Institute of
Computational Linguistics, Peking University research on Computational Lin-
guistics & Language Information Processing which covers a wide range of areas,
including Chinese syntax, language parsing, computational lexicography, seman-
tic dictionaries, computational semantics and application systems[20]. Informa-
tion Retrieval Lab, Harbin Institute of Technology mainly research information
extraction technology, auto index, text classification and cluster and so on [21].

Extracting protein-protein interactions from the biological literature has been
done by many institutes and researchers. However, researches about anti-AIDS
inhibitor extraction have not been reported yet. In this paper, we utilize the
Ontology-based Information Extraction method to extract anti-AIDS inhibitors.

3 The Proposed Approach: OIE

The feasible approach we presented for extracting anti-AIDS inhibitors from bi-
ological literature, called Ontology-based Information Extraction(OIE), consists
of four main steps: (1) the construction of initial corpus, (2) building anti-AIDS
inhibitors ontology, (3) annotating initial corpus and (4) extraction of annotated
entity which is described in the section of Architecture of OIE. Before discussing
(2) and (3) in detail, we first briefly discuss the construction of initial corpus.

Initial corpus usually composes of raw articles related to some specific domain.
In our work, the construction of the initial corpus is just to search articles with
keyword ‘HIV’ and ‘inhibitor’ from PubMed database.

In this section, we aim at drawing the architecture of OIE and discussing the
construction of ontology and the annotation of original corpus.

3.1 Architecture of OIE

The ontology provides specific domain knowledge for understanding anti-AIDS
inhibitors and annotating the original corpus. Be top of the architecture of OIE,
we also draw the interaction between the ontology module and annotation mod-
ule. Apparently, in order to extract inhibitor from biological literature, there are
other modules besides ontology and annotation modules. Fig. 1 denotes a generic
architecture which consists of seven main modules which are Interface Module,
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Retrieval Module, Corpus Module, Ontology Module, Thesaurus Module, Ex-
traction Module and Database Module. For some common modules, we collect,
share and reuse existing software packages, such as Thesaurus Module etc, and
we extend them to meet what scientific researchers need. There are several key
features in the Fig. 1, illustrated as follows:

Fig. 1. Architecture of OIE Overview

Interface Module. It is a very useful client to send user request and query
knowledge stored in database. Initially, users start a query with some keywords
and then get the results of search. The set of results are the raw material for
Corpus Module.

Corpus Module. It is regarded as the basic material for annotation module.
In general, corpus is constituted of some articles searched from the literature
database such as PubMed. We have known that the abstract outlines the whole
article. In order to improve the performance of extraction and lessen the com-
plexity, the corpus only contains the abstracts.

Ontology Module. This module, which provides a semantic framework for
information extraction and annotation,is the key module of the overall architec-
ture. According to the Ontology Module, domain experts manually annotate the
original corpus.

Annotation Module. Annotation the original corpus is a significant, pervasive
topic throughout the whole of architecture. Ontology and Thesaurus Module are
regarded as the background knowledge of annotation.

Extraction Module. The aim of this module is to extract information about
inhibitors from annotated corpus and interaction with database module to store
the result into database. In this paper, the annotated corpus has been format-
ted as XML, so we write a Java application to extract annotated entity from
annotated corpus.

Database Module. In order to make users search quickly and directly, the
extracted information usually store into database. It provides interface to access
for users.
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3.2 Ontology of Anti-AIDS Inhibitors

We have known that the ontology describes basic concepts in a domain and
defines relationship among them. Basic building blocks of ontology design include
classes or concepts, properties of each concept describing various features and
attributes of the concept, i.e., slots(sometimes called roles or properties), and
restrictions on slots(facets, sometime called role restrictions). Ontology together
with a set of individual instances of classes constitutes a knowledge base. At
present, there is no one correct methodology for developing ontology, nor is there
a single correct result. Therefore developing ontology is an iterative process.

The ontology has been developed in the biological sciences for several appli-
cations such as Gene Ontology[22] and BioCon Knowledge Base of the TAMBIS
Project[23]. Such ontology include conceptual hierarchies for database covering
diseases and drug names.

In this paper, we use Protégé tool to construct the ontology of anti-AIDS in-
hibitors. Protégé developed in the Musen Laboratory at Stanford Medical Infor-
matics and written in Java is a free, open source ontology editor and knowledge-
base framework , which also provides a Java API for independent development
of plug-ins.The Protégé platform supports two main ways of modeling ontology
via the Protégé-Frames and Protégé-OWL editors. The Protégé-Frames editor
provides a full-fledged user interface and knowledge server to support users in
constructing and frame-based domain ontology, customizing data entry forms,
and entering instance data. In this model, ontology consists of a set of classes
organized in a subsumption hierarchy to represent a domain’s salient concepts,
a set of slots associated to classes to describe their properties and relationships,
and a set of instances of those classes-individual exemplars of the concepts that
hold specific values for their properties. The Protégé-OWL editor is an extension
of Protégé that supports the Web Ontology Language (OWL). OWL is the most
recent development in standard ontology languages, endorsed by the World Wide
Web Consortium (W3C)[24]. The Protégé-OWL way is chosen as the editor of
anti-AIDS inhibitor ontology in order to annotate corpus based on the OWL
ontology.

The anti-AIDS inhibitor ontology, a taxonomy of some entities involved in
anti-AIDS inhibitors, is developed as the semantic classification used in the cor-
pus. In biological field, anti-AIDS inhibitors are divided into two types via struc-
ture type, Nucleoside Analogs and Non-Nucleoside.But according to the different
mechanism, the anti-AIDS inhibitors contain three main types, Retrovirus, Pro-
tease and Integrase Inhibitors which can be divided into more subdivision.

In Protégé, each inhibitor concept is a class, reproducing the hierarchical
nature of inhibitor. The root concept, Inhibitor Ontology Entity, has children
mechanism and structure. Fig. 2 shows the class hierarchy of inhibitor ontology
and some instance of protease inhibitors.

3.3 Corpus Annotation

The lack of an extensively annotated corpus of biological literature can be
seen as a major bottleneck for applying NLP techniques to bioinformatics. The
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Fig. 2. Class hierarchy and Protease individuals in Protégé

annotated corpus aims at providing high quality reference materials to let NLP
techniques work for bioinformatics and at providing the gold standard for the
evaluation of text mining systems.

The task of annotation can be regarded as identifying and classifying the
terms that appears in the texts according to a pre-defined classification which is
just provided by anti-AIDS inhibitor ontology we constructed. Hence, an OWL-
based Protégé plugin named iAnnotate Tab [25] is used to manually annotating
text with ontology concepts. The iAnnotate Tab can be used for developing
semantically annotated corpus and save the annotated document in XML with
‘class’ tags enclosing the annotated text.

In this paper, the original corpus consists of several abstracts from PubMed
database. Since we wanted our annotation work to converge on anti-AIDS in-
hibitors, we selected articles with the keywords, anti-AIDS and inhibitor from
PubMed database.

Fig. 3 shows the basic architecture that we are employing. The annotation tool
interacts Ontology Editor (Protégé) and Inhibitor ontology. By the annotation
tool, original corpus changes into annotated one.

4 Case Study

In order to examine the ontology we constructed, we have an experience with a
demonstrated application.
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Fig. 3. The basic Annotation Architecture

Firstly, the original corpus is obtained by searching articles related to ‘HIV’
&& ‘inhibitor’ from PubMed database and access 7400 abstracts. In order to
reduce the complexity, our original corpus consists of 500 abstracts with plain
text format.

Secondly, the original corpus is imported into Protégé, with IAnnotate Tab,
the biological experts manually annotate the corpus. Fig. 4 shows the abstract
annotated by IAnnotation tool. In left column, the words annotated by other
color are the instances of ontology class .

Fig. 4. Annotated Abstract by IAnnotation Tool

The annotated abstracts can be saved as XML format by IAnnotation tool.
Fig. 5 shows the XML format of annotated abstract. In this XML file, the ab-
stract is between tag IAnn and /IAnn. Other tags, such as tag ‘Retrovirus’,
‘Protease’, ‘Inhibitor’ denote the corresponding class of inhibitor ontology, the
instance of class is between a pair of tags. Here Antlbody-enzyme is an instance
of Retrovirus class.
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Fig. 5. Annotated Abstracts of XML format

The effectiveness of ontology is evaluated by annotation of original corpus.
During the process of annotation, the experts can fully annotate the instances
related to inhibitors depending on the ontology we constructed. Since original
corpus is manually annotated by expert, the inhibitor ontology satisfied the
requirements of domain experts, and annotated corpus is XML format, the pre-
cision of entity extraction is very high. Therefore, the corpus manually annotated
can be regarded as the training sets of automatic annotation. However, the effi-
ciency of manual annotation is indeed very low.

5 Conclusion and Future Work

In this paper, we mainly discussed how to build up the ontology of anti-AIDS
inhibitors, and later to extract inhibitor information from the biological litera-
ture based on the ontology we had constructed. The contributions of this paper
chiefly reflect on four aspects. Firstly, a feasible architecture for Ontology-based
Information Extraction is presented. Secondly, an conceptual model, anti-AIDS
inhibitor ontology, is set up by an ontology editor named Protégé tool. Further
more, original corpus is manually annotated by experts based on the ontology.
Finally, we extract the entities of inhibitors from the annotated corpus. Accord-
ing to the entities, we prove that the ontology is fulfilled as the background
knowledge of anti-AIDS inhibitors. In the near future, in order to improve the
efficiency of manual annotation, the next step of our work will focus on automatic
annotation of corpus, and the manually annotated corpus with high precision
and recall will be considered as the training sets of automatic annotation.
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Abstract. Recently, hiding secret data in DNA becomes an important and 
interesting research topic. Some researchers hid data in non-transcribed DNA, 
non-translated RNA regions, or active coding segments. Unfortunately, these 
schemes either alter the functionalities or modify the original DNA sequences. 
As a result, how to embed the secret data into the DNA sequence without 
altering the functionalities and to have the original DNA sequence be able to be 
retrieved is worthy of investigating. This paper apply two reversible 
information hiding schemes on DNA sequence by using the difference 
expansion technique and lossless compression. The reversible property makes 
the secret data hidden in anywhere in DNA without altering the functionalities 
because the original DNA sequence can be recovered in our schemes. 

1   Introduction 

Nowadays, biology techniques become more and more popular, and they are applied 
to many kinds of applications, authentication protocols [1], biochemistry, 
cryptography [2][3][4][5], and so on. As we know, DNA is two twisted strands 
composed of four bases, adenine (A), cytosine (C), thymine (T) and guanine (G). 
Every DNA strand, RNA, seems both random and meaningful. Recently, hiding secret 
data in DNA becomes an important and interesting research topic because of this 
property. In [6], a simple substitution scheme is used, where three consecutive bases 
are treated as a character. For example, ‘B’ = CCA, ‘E’ = GGC, and so on. As a 
result, there are at most 64 characters can be encoded in [6]. The frequencies of 
characters ‘E’ and ‘I’ appeared in the text are quite high. Consequently, the simple 
substitution scheme is dangerous because it cannot defend against the attack by 
analyzing the frequency of each set consisting of three DNA bases. In [7], two 
methods are proposed. The first method is a simple technique to hide data in non-
transcribed DNA or non-translated RNA regions, and it can be treated as a 
complicated version of the scheme proposed in [6]. The second method is to hide data 
in active coding segments without influencing the result amino acid sequence by 
using arithmetic coding. Because there are various specific restrictions to which 
codons can be used in live DNA, the second method will degrade, where the length of 
an mRNA codon is 3-base. In [4], a stegographic approach is shown. 
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Unfortunately, these schemes either alter the functionalities or modify the original 
DNA sequences. As a result, how to embed the secret data into the DNA sequence 
without altering the functionalities and to have the original DNA sequence be able to 
be retrieved is worthy of investigating. Nowadays, plenty of data hiding schemes are 
proposed. To have the hidden data unnoticeable, the stego-medium must be 
meaningful. Different from the products of the data hiding schemes and the traditional 
encryption ones, DNA is not only random but also significant. Thus some schemes 
based on DNA were been presented. In this paper, two data hiding schemes are 
proposed. In the schemes, secret messages are hidden in a DNA sequence so that the 
hidden data will not be detected. Moreover, the host DNA sequence can be 
reconstructed after the reverse operation, which far differs from the previous schemes 
also based on DNA. This property not only ensures the security of the secret data but 
also preserves the functionality of the original DNA. 

2   Preliminaries 

The biological background needs to be established to have the article easier to 
understand. In the following, how a DNA sequence eventually leads to a protein is 
demonstrated. The basics are first given followed by transcription and translation [7]. 

DNA is two twisted strands composed of four bases, adenine (A), cytosine (C), 
thymine (T) and guanine (G). The four bases represent the genetic code. A bonds with 
the complementary T, G bonds with the complementary C, and vice versa. This is 
very useful for error detection. Thus one strand and the corresponding complementary 
strand constitute DNA. For example, one strand is AACGTC, and the other must be 
TTGCAG. The DNA sequence determines the arrangement of amino acids which 
form a protein. Proteins are responsible for almost everything that goes on in the cells. 
In a word, DNA determines (1) what, (2) when, and (3) how much of everything 
which the cellular machinery produces. 

Transcription is the process to create RNA, an intermediary copy of the instructions 
contained in DNA. RNA is a single strand and contains nucleotide (N), uracil (U), 
where thymine (T) would appear in DNA. For clarity, the four bases in RNA are 
adenine (A), cytosine (C), uracil (U) and guanine (G). Note that RNA is actually 
interpreted by the cellular machinery. In other words, DNA copies are created in 
abundance and translated into proteins while DNA is retained safely in the nucleus of 
the cell. A promoter is an RNA polymerase binding to a thermodynamically favorable 
region of the DNA, and it can be treated as the start signal for transcription. 
Moreover, it is one of the methods to control how much of a protein should be 
produced. Thus, many deficiency diseases and cancers are linked to the problems of 
the promoter sites. 

The RNA copy (transcript) is referred to mRNA (message RNA) by discarding the 
intervening sequences of RNA. Note that the intervening sequences, having structural 
functions and not innocuous, do not code for protein. mRNA leaves the nucleus and 
binds a ribosome which facilitates the translation of the mRNA sequence into protein. 
Two ribosomal subunits, forming a complex, are bounded by mRNA. The ribosome 
steps linearly along the mRNA strand. There are twenty distinct amino acids, Phe, 
Leu, Ile, Val, Ser, Pro, Thr, Ala, Tyr, His Gln, Asn, Lys, Asp, Glu, Cys, Trp, Arg, and 
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Gly, which can be chained together during protein synthesis. On an mRNA, a codon, 
three nucleotides, indicates which amino acid will be attached next. The codon binds 
a group of three nucleotides on an anticodon, a tRNA molecule. There are about forty 
distinct tRNA molecules, and each one of them has a binding site for one of the amino 
acids. tRNA can be treated as a medium to translate nucleic acid code into protein. 
Appropriate tRNA binds to codon on the mRNA. Translation is completed while the 
ribosome encounters a STOP codon, and the protein is released. 

In 2003, Shimanovsky et al. [8] exploited the codon redundancy to hide data in 
mRNA sequence. Generally, an mRNA codon is composed of three nucleotides. The 
possible nucleotides are U, C, A, and G. Hence, there are 43

 combinations to form an 
mRNA codon. However, there are only twenty distinct amino acids, encoded from the 
mRNA codon. This clearly shows that some codons might be mapped to the same 
amino acids. For example, the codons ‘UUA’, ‘CUU’, ‘CUA’, ‘UUG’, ‘CUC’, and 
‘CUG’ are mapped to the same amino acid Leu. Shimanovsky et al. exploited this 
redundancy to embed information in the mRNA codon. 

In their scheme, if the codon should be encoded with ‘UUA’ but the secret message 
is four, they use the codon ‘UUG’ to replace the original one. It is because ‘UUG’ is 
the fourth codon of the set of codons whose mapping amino acid is Leu. Although the 
replacement will not influence the transcription results, they modify the nucleotides of 
the original DNA sequence, which might potentially cause unknown effects. 
Therefore, we need a reversible hiding mechanism that can not only conceal 
information into the DNA sequence but also completely restore the original sequence. 

3   The Reversible Data Hiding Schemes 

The proposed schemes adopt the lossless compression approach and the difference 
expansion technique to hide the secret message in a DNA sequence, respectively. 
Different from an image composed of pixels, a DNA sequence is composed of four 
nucleotides, A, C, G, and T. Hence, we need to transform the representation format of 
the nucleotides such that the hiding techniques can be used to conceal the secret 
message in a DNA sequence. 

First, each nucleotide symbol of the DNA sequence is converted into a binary 
string. A convenient strategy is to encode each nucleotide with two bits in 
alphabetical order. For example, the nucleotide A is encoded with ‘00’, C is encoded 
with ‘01’, G is encoded with ‘10’, and T is encoded with ‘11’. 

Next, several bits of the binary formatted DNA sequence are combined to form a 
bit string, and then the bit string is converted to a decimal integer. Each integer in the 
decimal formatted DNA sequence is called a word. Let w be the length of a bit string 

to form a word. Let us take a DNA sequence ‘AGTTCAGT’ as an example. The 
binary format of the sequence is ‘0010111101001011’. Assume that w = 4, the first 

four bits ‘0010’ are converted to the decimal integer 2 because (0010)2=(2)10. Hence, 
the decimal format of the DNA sequence ‘AGTTCAGT’ is ‘2 15 4 11’. After that, the 
decimal formatted DNA sequence can be used to conceal the secret message. 
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3.1   The Type-I Reversible Data Hiding Scheme 

The first proposed scheme is a lossless compression-based information hiding 
scheme. First, the scheme compresses the decimal formatted DNA sequence by using 
the lossless compression method. Next, the secret message is appended to the end of 
the compression result to form a bit stream. Then, the scheme adds a 16-bit header 
before the bit stream, where the header records the size of the compression result. 

After the above procedures, the proposed scheme applies least-significant-bit 
(LSB) substitution to hiding the bit stream into the decimal formatted DNA sequence. 
Finally, the scheme converts the hidden result from the decimal format to nucleotides. 
The diagram of the hiding scheme is shown in Fig. 1. 

 

Fig. 1. Diagram of the lossless compression-based information hiding scheme 

Nowadays, many lossless compression techniques have been proposed such as 
Huffman coding, Lemple-Ziv coding, run-length coding, arithmetic coding, and so on 
[7][9][10]. The proposed scheme adopts the arithmetic coding technique to compress 
the decimal formatted DNA sequence. It is because the arithmetic coding technique 
possesses the great compression performance and needs not to maintain complex data 
structure in the compression process. In addition, the technique is suitable for bit 
streams compression. 

In the embedding phase, the secret bits of the bit stream are embedded in the 
rightmost k bits of each word, which is represented with w bits. In order to increase 
the security of the hidden message, the scheme assigns different k’s to different 
words. The value of k is determined by using a pseudo-random number generator with 
a secret key. Only the legal users who own the secret key can extract the secret 
message from the hidden DNA sequence. 

The total hiding payload of the lossless compression-based scheme is 

                                                        DNAk
w

N
PLC −××= 2

                                    (1) 

where N is the number of nucleotides in a DNA sequence, k is the number of bits 
concealed in a word, and DNA is the length of the compressed bit stream of the 

DNA sequence. 
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In the decoding process, the hidden DNA sequence is converted from nucleotides 
to a binary string. The scheme collects rightmost k bits from each word to form a bit 
stream. Because the first 16 bits are the header which records the size of the 
compression result, we divide the compression result and the secret message from the 
bit stream. Then, the compression result is used to restore the decimal formatted DNA 
sequence. Finally, the scheme converts the decimal formatted DNA sequence from 
the decimal format to nucleotides to obtain the original DNA sequence. 

3.2   The Type-II Reversible Data Hiding Scheme 

The second proposed scheme is a Type-II information hiding scheme which adopts 
the difference expansion technique to conceal a secret bit in two neighboring words. 
However, the difference expansion technique suffers from the overflow and 

underflow problems. The value of a word ranges between 0 and 12 −w . The 
overflow or underflow problems occur when the difference between two neighboring 

words is great such that the hidden result is greater than the upper bound 12 −w (or 
smaller than the lower bound 0). For example, assume that w =8, the value of a word 

is ranged from 0 to 255. Suppose that there are two neighboring words A =178 and B 
=239, and the secret bit h = 1. The difference between A and B is 61. The embedded 

results of A and B are ⎥⎦
⎥

⎢⎣
⎢ ++×+=′

2

1)1612(
208A =270 and 

⎥⎦
⎥

⎢⎣
⎢ ++×−=′

2

1)1612(
208B =147, respectively. Obviously, A′ is greater than the 

upper bound 255. 
To prevent the underflow or overflow problems, the hidden results must satisfy the 

fowling constraints: 

12
2

1
0 −≤⎥⎦

⎥
⎢⎣
⎢ +′

+=′≤ wd
A l  and 

                       12
2

0 −≤⎥⎦
⎥

⎢⎣
⎢ ′

−=′≤ wd
B l                                           (2) 

Hence, if two neighboring words, namely a word pair, satisfy the first condition 

                 }12),12(2min{2 +×−−×≤+× ll
whd                              (3) 

The word pair can be used to conceal a secret bit. If the word pair satisfies the first 
condition, we call this pair expandable. According to the first condition, we can 
observe that the word pair A=178 and B=239 is not expandable since 

}12082),208255(2min{1612 +×−×≥+× . 

If the word pair does not satisfy the first condition, we conceal the secret bit on the 
difference value of the pair without expansion. The new difference value is obtained 
by 

                          h
d

d +⎥⎦
⎥

⎢⎣
⎢×=′

2
2                                                        (4) 
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Hence, the hiding results must satisfy the second condition 

              }12),12(2min{
2

2 +×−−×≤+⎥⎦
⎥

⎢⎣
⎢× ll

wh
d

                              (5) 

If the pair satisfies the second condition, we call the pair changeable. With the same 
example, the word pair A = 178 and B = 239 is changeable because 

}12082),208255(2min{1
2

61
2 +×−×≤+⎥⎦

⎥
⎢⎣
⎢× . The hidden results of A and B are 

⎣ ⎦
⎥
⎦

⎥
⎢
⎣

⎢ ++×
+=′

2

1)12/612(
208A =239 and ⎣ ⎦

⎥
⎦

⎥
⎢
⎣

⎢ ++×
−=′

2

1)12/612(
208B =178, 

respectively. 
The scheme uses a location map to indicate whether the pair is expandable or not. 

If the pair is expandable, the indicator of the pair is 1; otherwise, the indicator of the 
pair is 0. The location map is used to restore the original words. Hence, the location 
map must be kept for restoring the DNA sequence. The scheme losslessly compresses 
the location map by using arithmetic coding. In addition, the scheme collects the 
original LSBs of the changeable pairs. The collected LSBs are used to reconstruct the 
original words of the changeable pairs in the decoding process. 

The scheme then concatenates the compressed bit stream of the location map, the 
collected LSBs, and the secret message to form a bit stream. The pre-process 
procedure is summarized as shown in Algorithm 1. Following that, the scheme 
performs the hiding procedure shown in Algorithm 2 on each word pair to obtain the 
hidden words. Finally, the scheme converts the hidden words from the decimal format 
to nucleotides. 

The total hiding payload of the difference expansion-based scheme is 

                   MapLSB
w

N
PDE +−=                                              (6) 

where MapLSB +  is the length of the compressed bit stream of the LSBs in the 

changeable pairs concatenated with the location map. 
 

Algorithm 1. The pre-process procedure 
Input: the decimal formatted DNA sequence and the secret message 
Output: the bit stream 
1) Partition the words of the sequence into word pairs. 
2) Classify the set of the word pairs into three subsets, S1 , S2 , and S3 , where the 
pairs in S1 are expandable, the pairs in S2 are changeable, and the non-changeable 
pairs are in S3. 
3) Create a location map to indicate whether the word pair is expandable or not. 
4) Compress the location map by using arithmetic coding. 
5) Collect the original LSBs of the word pairs in S2 except the pairs whose 
difference value is equal to zero or -1. 
6) Append the collected LSBs and the secret message to the end of the 
compression result to form a bit stream. 
7) Return the bit stream. 
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Algorithm 2. The hiding procedure 
Input: the word pair, A and B , and the secret bit b of the bit stream 
Output: the hidden results A′  and B′

 

1) Compute the difference d between A and B by d =A-B. 
2) Calculate the least integer value l  of the average of A and B by 

⎥⎦
⎥

⎢⎣
⎢ +=

2

BA
l . 

3) If the word pair belongs to S1 then  
hdd +×=′ 2  

else 

h
d

d +⎥⎦
⎥

⎢⎣
⎢×=′

2
2 . 

4) Obtain the hidden results A′
 and B′

 by 

⎥⎦
⎥

⎢⎣
⎢ +′

+=′
2

1d
A l  and ⎥⎦

⎥
⎢⎣
⎢ ′

−=′
2

d
B l , respectively. 

5) Return A′
 and B′ . 

 
In the decoding process, the scheme extracts the hidden secret message and 

recovers the original DNA sequence from the hidden DNA sequence. First of all, the 
scheme converts the hidden DNA sequence from nucleotides to a binary string, and 
composes the words from the binary string. 

Next, the scheme partitions the words into word pairs and checks whether the pairs 
are changeable or not. For the changeable pair, the scheme collects the LSBs of the 
difference to form a bit stream. Then, we can identify the compressed bit stream of 
the location map, the original LSBs of the changeable pairs, and the secret message 
from the produced bit stream. 

Finally, the scheme decodes the location map from the compressed bit stream and 
uses the map to recover the original DNA sequence. The recovering procedure for 
each word pair is stated in Algorithm 3. For the changeable word pair with the 
difference value d ′ such that 12 ≤′≤− d , the scheme uses its original LSBs to 
restore the original values. 

 
Algorithm 3. The recovering procedure 
Input: the word pair, A′

 and B′  
Output: the original words A and B 
1) Compute the difference d ′ between A′

 and B′  by BAd ′−′=′ . 
2) Calculate the least integer value l  of the average of A′

 and B′ by 

⎥⎦
⎥

⎢⎣
⎢ ′+′

=
2

BA
l  

3) If the word pair is changeable then 
If the indicator of the pair in the location map is 1 then 

⎥⎦
⎥

⎢⎣
⎢ ′

=
2

d
d    //for expandable word pair 
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else if ( 10 ≤′≤ d 0) then 
d = 1 
else if ( − 2 ≤ d ′ ≤ −1) then 
d = -2 

else h
d

d +⎥⎦
⎥

⎢⎣
⎢ ′

×=
2

2 . 

4) If the word pair is expandable or is changeable with the difference value d ′ , 
which satisfies − 2 ≤ d ′ ≤ 1, then 

⎥⎦
⎥

⎢⎣
⎢ ++=

2

1d
A l  and ⎥⎦

⎥
⎢⎣
⎢−=

2

d
B l  

else ⎥⎦
⎥

⎢⎣
⎢ ++=

2

1d
A l +the original LSB and ⎥⎦

⎥
⎢⎣
⎢−=

2

d
B l + the original LSB. 

5) Return A and B. 

4   Experiments and Results 

Experiments were carried out to evaluate the performance of the proposed schemes. 
The proposed schemes were tested on a Pentium IV 2.4 GHz personal computer with 
512 RAM. As shown in Table 8-2, eight DNA sequences, AC153526, AC166252, 
AC167221, AC168874, AC168897, AC168901, AC168907, and AC168908, were 
used as the test DNA sequences [11]. In Table 1, ‘Mus musculus’ is the scientific 
name of house mice, and ‘Bos taurus’ is the scientific name of cows. The system uses 
the Visual C++ function random() to generate pseudo-random numbers and a secret 
message. 

Table 1. Twelve tested DNA sequences 

Locus Number of 
nucleotides 

Definition 

AC153526 257,731 Mus musculus clone RP23-383C2, WORKING DRAFT 
SEQUENCE, 11 unordered pieces 

AC166252 169,736 Mus musculus clone RP23-100G10, WORKING DRAFT 
SEQUENCE, 9 unordered pieces 

AC167221 207,591 Mus musculus clone RP23-3P24, WORKING DRAFT 
SEQUENCE 

AC168874 30,868 Bos taurus clone CH240-209N9, 11 unordered pieces 
AC168897 50,145 Bos taurus clone CH240-190B15, 18 unordered pieces 
AC168901 21,286 Bos taurus clone CH240-185I1, 7 unordered pieces 
AC168907 61,902 Bos taurus clone CH240-195I7, 17 unordered pieces 
AC168908 61,438 Bos taurus clone CH240-195K23, 18 unordered pieces 

First, the proposed lossless compression-based scheme was tested on the sequence 
AC166252 with different w ’s to determine the proper length of a bit string to form a 

word. In this experiment, we only hide a secret bit in the rightmost bit of each word. The 
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experimental results are given in Table 2. The symbol w  in the table is the length of a 

bit string to form a word. The column ‘Capacity’ is the total number of bits embedded in 
the sequence, ‘Compressed results’ is the length of the compressed bit stream of the 
DNA sequence, and ‘Payload’ is the length of the secret message which we conceal in 
the sequence. Obviously, the lossless compression-based scheme has the best 
performance for AC166252 with w = 2, where the scheme is able to hide 135,936 bits. 

Table 2. Experimental results of the lossless compression-based scheme on AC166252 with 

different w ’s 

|w| Number of words Capacity Compressed results Payload 
2 168, 936 168, 936 33,000 135,936 
4 84,468 84,468 18,160 66,308 
6 56,312 56,312 12,816 43,496 
8 42,234 42,234 10,016 32,218 

10 33,787 33,787 8,016 25,771 
12 28,156 28,156 6,880 21,276 

 
Next, we performed the lossless compression-based scheme on the tested sequences 

with w =2 to examine the hiding performance. The experimental results are shown in 

Table 3. The column ‘bpn’ is the abbreviation of bit-per-nucleotide that is the 
measurement to estimate the hiding ability of each nucleotide. The bpn is computed 

by 
wordsofNumber

Payload
bpn

__
= . 

We can observe that the lossless compression-based scheme has the best 
performance for AC153526, where the scheme is able to hide 208,753 bits (0.41 bpn). 
As to AC168901, the scheme is able to hide 15,372 bits (0.37 bpn). 

Table 3. Experimental results of the lossless compression-based scheme on the tested seque- 

nces with w =2 

Locus Number of 
words 

Capacity Compressed 
results 

Payload bpn 

AC153526 256,729 256,729 47,976 208,753 0.81 
AC166252 168,936 168,936 33,000 135,936 0.80 
AC167221 168,936 168,936 33,000 135,936 0.80 
AC168874 29,153 29,153 7,120 22,033 0.76 
AC168897 48,434 48,434 11,168 37,266 0.77 
AC168901 20,580 20,580 5,208 15,372 0.75 
AC168907 60,302 60,302 13,536 46,766 0.78 
AC168908 59,736 59,736 13,440 46,296 0.78 

The difference expansion-based hiding scheme was performed on the sequence 
AC166252 with different w ’s to determine the proper w . From Table 4, it is 

obvious that the scheme has the better result on the sequence while w =2. 
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Table 4. Experimental results of the difference expansion-based scheme on AC166252 with 

different w ’s 

|w| Number of words Capacity LSBs Compressed results Payload 
2 168,936 40,810 10,184 18,176 12,450 
4 84,468 20,037 5,424 10,024 4,589 
6 56,312 12,849 3,936 6,704 2,209 
8 42,234 9,990 2,904 5,272 1,814 

10 33,787 7,561 2,440 4,176 945 
12 28,156 6,668 2,048 3,688 932 
 
After that, the difference expansion-based scheme is performed on the tested 

sequences with w =2 to examine the hiding performance. Table 5 shows that the 

difference expansion-based scheme has the best performance on AC166252, where 
the scheme is able to hide 22,634 bits (0.13 bpn). As to AC168901, the scheme can 
hide 1,819 bits (0.09 bpn). 

In addition, we tested the performance of the difference expansion-based scheme on 
two human chromosomes, Hs1_34565 Homo sapiens chromosome 1 (chromosome 1) 
and Hs5_23304 Homo sapiens chromosome 5 (chromosome 5) [12]. The size of 
chromosome 1 is 226,051,537, and that of chromosome 5 is 177,846,507. The capacity 
of chromosome 1 is 104,399,592, and that of chromosome 5 is 80,466,351. 

Table 5. Experimental results of the difference expansion-based scheme on the tested seque- 

nces with w =2 

Locus Number of 
words 

Capacity Compressed 
results 

Payload bpn 

AC153526 256,729 57,128 26,080 31,048 0.12 
AC166252 168,936 40,810 18,176 22,634 0.13 
AC167221 168,936 40,838 18,272 22,566 0.13 
AC168874 29,153 6,550 3,728 2,822 0.10 
AC168897 48,434 10,821 5,968 4,853 0.10 
AC168901 20,580 4,515 2,696 1,819 0.09 
AC168907 60,302 14,443 7,376 7,067 0.12 
AC168908 59,736 12,931 7,120 5,811 0.10 

The proposed scheme not only can conceal secret data in the gray-level images, but 
also can widely hide secret data in the color images. In this subsection, we compare 
the performance of the proposed scheme with that of Alattar’s scheme applying 
spatial triplet algorithm and quad algorithm using Lena and Baboon color images 
[13]. The results are shown in Fig. 2 and Fig. 3. In Fig. 2, the proposed scheme 
outperforms Alattar’s scheme with quad algorithm at low PSNR, and Alattar’s 
scheme with triplet algorithm outperforms our scheme at low PSNR. However, the 
proposed scheme outperforms Alattar’s scheme with triplet algorithm at high PSNR, 
and Alattar’s scheme with quad algorithm outperforms our scheme at high PSNR. In 
Fig. 3, the proposed scheme outperforms Alattar’s schemes with quad algorithm and 
triplet algorithm at low PSNR. For PSNR=30 dB, the payload capacity of the 
proposed scheme is higher than that of Alattar’s scheme. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



94 T. Chen 

 
PSNR(dB) 

Fig. 2. Capacity-distortion performance comparisons between Alattar’s scheme and the prop- 
osed scheme on Lena 

 

Fig. 3. Capacity-distortion performance comparisons between Alattar’s scheme and the prop 
osed scheme on Baboon 

5   Conclusion 

This paper introduced two reversible information hiding schemes for DNA sequence 
based on lossless compression and difference expansion. The lossless compression-
based scheme uses the compressed bit stream to achieve reversibility while the 
difference expansion–based scheme explores the redundancy in the word to perform 
reversibility. Both of the schemes are implemented and performed on different DNA 
sequences, including homo, house mice and cows. For w =2, the average payload of 

the lossless compression-based scheme is 0.78 (bpn) while that of the difference 
expansion-based scheme is 0.11(bpn). The proposed schemes can not only hide secret 
information in the DNA sequence but also recover the original DNA sequence from 
the hidden results without loss. 

Reversible information hiding is a new technique that can be broadly applied in 
covert communication, digital rights management, and content authentication, 
especially, useful for sensitive military, legal, and medical data. Hence, we would like 
to develop some reversible information hiding techniques for various multimedia, 
such as video, audio, animation, text, graphic, and so on. A DNA sequence appears 
almost like a random sequence. However, each nucleotide in the sequence has its own 
meaning. Therefore, how to explore the features from the sequence, and stand on the 
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characteristics of the features to design applicable data embedding scheme is another 
target of our future work. 
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Abstract. In this paper, we resolve two open questions on the compu-
tation and approximation of an Arrow-Debreu equilibrium in a Leontief
exchange economy:

– We prove that the Leontief market exchange problem does not have
a fully polynomial-time approximation scheme, unless PPAD ⊆ P.

– We show that the smoothed complexity of any algorithm for comput-
ing a market equilibrium in a Leontief economy, is not polynomial,
unless PPAD ⊆ RP.

1 Introduction

The computation of a market equilibrium is a fundamental problem in modern
economics [13] as the equilibria might provide useful information for the predic-
tion of market trends, in the decision for future investments, and in the develop-
ment of economic policies. In this paper, we consider the complexity of a classic
model, the Leontief exchange economy. We resolve two open questions concerning
the computation and approximation of market equilibria in this model.

A Leontief economy with m divisible goods (or commodities) and n traders is
specified by two m×n matrices 1 E = (ei,j) and D = (di,j): E is the endowment
matrix of the traders where ei,j specifies the amount of commodity i that trader j
initially has. We assume, without loss of generality, that there is exactly one unit
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a vector, say a ∈ R
n is present, its components is denoted by a1, . . . , an. Matrices

are denoted by bold upper-case Roman letters such as A. The (i, j)th entry of a
matrix A is denoted by ai,j . We use ai to denote the ith column of A. We also use
the following notations: (1) R

m
+ : the set of m-dimensional vectors with non-negative

real entries. (2) R
m×n
[a:b] : the set of all m × n matrices with real entries between a and

b. (3) P
n: the set of all vectors x in n dimensions such that

�n
i=1 xi = 1 and xi ≥ 0

for all 1 ≤ i ≤ n. (4) 〈a|b〉: the dot-product of two vectors in the same dimension.

(5) ‖x‖p: the p-norm of vector x, that is, (
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|xp
i |)1/p and ‖x‖∞ = maxi |xi|.
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of each type of good. With this assumption, the sum of every row of E is equal
to 1. D is the utility matrix. It defines n utility functions u1, . . . , un, one for each
trader. The exchange of goods can also be expressed by a non-negative m × n
matrix X = (xi,j). Let xj be the jth column of X. The utility of trader j in X
is uj(xj) = mini {(xi,j)/(di,j)}.

The individual objective of each trader is to maximize his or her utility. How-
ever, the utilities that these traders can achieve depend on the initial endow-
ments, the individual utilities, and potentially, the (complex) process that they
perform their exchanges.

In Walras’ pure view of economics [16], the individual objectives of traders
and their initial endowments enable the market to establish a price vector p of
the goods in the market. Then the whole exchange can be conceptually char-
acterized as: the traders sell their endowments – to obtain money or budgets –
and individually optimize their objectives by buying the bundles of goods that
maximize their utilities. By selling the initial endowment ej , trader j obtains a
budget of 〈ej |p〉 amount.

The optimal bundle for uj is a solution to the following mathematical program:

maxuj(xj) subject to 〈xj |p〉 ≤ 〈ej|p〉 ,xj ≥ 0 (A1)

A solution to (A1) is referred to as an optimal demand of trader j under prices p.
The price vector p is an Arrow-Debreu equilibrium price or simply an equilibrium
of the Leontief economy (E,D) if there exists optimal solution X = (x1, . . . ,xn)
to (A1) such that (A2) xi = 0 if 〈ei|p〉 = 0 and (A3)

∑
j xj ≤ 1, where 1

is the m-dimensional column vector with all ones. This last constraint states
that the traders’ optimal demands can be met by the market. In other words, an
equilibrium price vector essentially allows each trader to make individual decision
without considering others’ utilities nor how they achieve their objectives.

A central complexity question in the Leontief market exchange problem is:
Is the problem of finding an equilibrium of a Leontief economy in P? So far no
polynomial-time algorithm has been found for this problem. The combination of
two recent results greatly dashed the hope for a positive answer to this question.
Codenotti, Saberi, Varadarajan, and Ye [4] gave a polynomial-time reduction
from two-person games to a special case of the Leontief economy. In a remarkable
breakthrough, Chen and Deng [2] proved that the problem of finding a Nash
equilibrium of a two-person game is PPAD-complete2.

1.1 Our Result

In practice, one may be willing to relax the condition of equilibria and con-
siders the computation of approximate market equilibria. Deng, Papadimitriou,

2 We refer the readers who are not familiar with the complexity class PPAD to
the paper by Papadimitriou [12] and also to the subsequent papers on the PPAD-
completeness of normal games [5,1,6,2,3]. This class includes several important search
problems such as discrete fixed-point problems and the problem of finding a Nash
equilibrium.
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Safra [7] proposed a notion of an approximate market equilibrium. A price p
is an ε-approximate equilibrium of a Leontief economy (E,D) if there exists an
ε-approximately optimal demand X = (x1, . . . ,xn) such that

∑
j xj ≤ (1 + ε)1.

Question 1 (Fully Polynomial Approximate Leontief?). Can an ε-approximate
equilibrium of a Leontief economy with m goods and n traders be computed in
time polynomial in m, n, and 1/ε?

In this paper, we provide an answer to question 1: We show that there is no fully
polynomial-time approximation scheme for Leontief economies unless PPAD
⊆ P. The main ingredient of our result is a numerical stability analysis of the
reduction introduced by Condenotti et al [4]. We prove that the problem of
finding an ε-approximate Nash equilibrium of an n×n two-person games can be
reduced to the computation of an (ε/n)2-approximate equilibrium of a Leontief
economy with 2n goods and 2n traders. This polynomial relationship between
approximate Nash equilibria of bimatrix games and approximate Arrow-Debreu
equilibria of Leontief economies is significant because it enables us to apply the
result of Chen, Deng, and Teng [3] to show that finding an approximate market
equilibrium is as hard as finding an exact market equilibrium, and is as hard
as finding a Nash equilibrium of a two-player game or a discrete Brouwer fixed
point in the most general settings.

We also consider the smoothed complexity of the Leontief market exchange
problem. In the smoothed model introduced by Spielman and Teng [14], an
algorithm receives and solves a perturbed instance. The smoothed complexity
of an algorithm is the maximum over its inputs of the expected running time of
the algorithm under slight random perturbations of that input. The smoothed
complexity is then measured as a function of both the input length and the
magnitude σ of the perturbations. An algorithm has smoothed polynomial-time
complexity if its smoothed measure is polynomial in n, the problem size, and in
1/σ [14,15].

In the smoothed analysis of Leontief economies, we consider an arbitrary input
(Ē, D̄) with 0 ≤ d̄i,j ≤ 2 and 0 ≤ ēi,j ≤ 1. Suppose E = (ei,j) and D = (di,j)
are perturbations of Ē and D̄.

The smoothed complexity of the Leontief exchange problem (Ē, D̄) is measured
by the expected complexity of finding an equilibrium of the Leontief economy
(E,D).

Question 2 (Smoothed Polynomial Leontief?). Can an equilibrium of a Leontief
economy be computed in smoothed time polynomial in m, n, and 1/σ? Can an
ε-equilibrium of a Leontief economy be computed in smoothed time polynomial
in m, n, 1/ε and 1/σ?

By refining our analysis of the reduction from the two-person games to Leontief
economies, we show the statement is unlikely true. We prove that the problem of
finding an (approximate) equilibrium of a Leontief economy is not in smoothed
polynomial time, unless PPAD ⊆ RP.
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2 Approximate Nash Equilibria

The two-person game or the bimatrix game is a non-cooperative game between
two players [11,9], the row player and the column player. If the row player has m
pure strategies and the column player has n pure strategies, then their payoffs
are given by a pair of m × n matrices (A,B).

A mixed row strategy is a vector x ∈ P
m and a mixed column strategy is a

vector y ∈ P
n. The expected payoffs to these two players are respectively x�Ay

and x�By. A Nash equilibrium is then a pair of vectors (x∗ ∈ P
m,y∗ ∈ P

n) such
that for all pairs of vectors x ∈ P

m and y ∈ P
n,

(x∗)�Ay∗ ≥ x�Ay∗ and (x∗)�By∗ ≥ (x∗)�By.

Every two-person game has at least one Nash equilibrium [11]. But in a recent
breakthrough, Chen and Deng [2] proved that the problem of computing a Nash
equilibrium of a two-person game is PPAD-complete.

One can relax the condition of Nash equilibria and considers approximate
Nash equilibria. There are two notions of approximation. An ε-approximate Nash
equilibrium of game (A,B) is a pair of mixed strategies (x∗,y∗), such that for
all x,y ∈ P

n,

(x∗)�Ay∗ ≥ x�Ay∗ − ε and (x∗)�By∗ ≥ (x∗)�By − ε.

An ε-relatively-approximate Nash equilibrium of game (A,B) is a pair of mixed
strategies (x∗,y∗), such that for all x,y ∈ P

n,

(x∗)�Ay∗ ≥ (1 − ε)x�Ay∗ and (x∗)�By∗ ≥ (1 − ε)(x∗)�By.

Note that the Nash equilibria and the relatively-approximate Nash equilib-
ria of a two-person game (A,B) are invariant under positive scalings, i.e., the
bimatrix game (c1A, c2B) has the same set of Nash equilibria and relatively-
approximate Nash equilibria as the bimatrix game (A,B), as long as c1, c2 > 0.
However, each ε-approximate Nash equilibrium (x,y) of (A,B) becomes a c · ε-
approximate Nash equilibrium of the bimatrix game (cA, cB) for c > 0.

Thus, we often normalize the matrices A and B so that all their entries are
between 0 and 1, or between -1 and 1, in order to study the complexity of
approximate Nash equilibria [10,3]. Recently, Chen, Deng, and Teng [3] proved
the following result.

Theorem 1 (Chen-Deng-Teng). For any constant c > 0, the problem of
computing a 1/nc-approximate Nash equilibrium of a normalized n × n two-
person game is PPAD-complete. It remains PPAD-complete to compute a
1/nc-relatively-approximate Nash equilibrium of an n × n bimatrix game.

3 Market Equilibria: Approximation and Smoothed
Complexity

In this and the next sections, we analyze a reduction π that transforms a two-
person game (Ā, B̄) into a Leontief economy (Ē, D̄) = π(Ā, B̄) such that from
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each (ε/n)2-approximate Walrasian equilibrium of (Ē, D̄) we can construct an
ε-relatively-approximate Nash equilibrium of (Ā, B̄).

We will also consider the smoothed complexity of Leontief economies. To
establish a hardness result for computing an (approximate) market equilibrium
in the smoothed model, we will examine the relationship of Walrasian equilibria
of a perturbed instance (E,D) of (Ē, D̄) and approximate Nash equilibria of
(Ā, B̄). In particular, we show that if the magnitude of the perturbation is σ,
then we can construct an (ε + n1.5√σ)-relatively-approximate Nash equilibrium
of (Ā, B̄) from each (ε/n)2-approximate equilibria of (E,D).

3.1 Approximate Market Equilibria of Leontief Economy

We first introduce the explicit definition of market equilibria and approximate
market equilibria in a Leontief economy.

Let D be the demand matrix and E be the endowment matrix of a Leon-
tief economy with m goods and n traders. Given a price vector p, trader j
can obtain a budget of 〈ej |p〉 by selling the endowment. By a simple varia-
tional argument, one can show that the optimal demand xj with budget 〈ej|p〉
satisfies xi,j/di,j = xi′,j/di′,j for all i and i′ with di,j > 0 and di′,j > 0.
Thus, under the price vector p, the maximum utility that trader j can achieve
is 0 if 〈ej |p〉 = 0, and 〈ej|p〉 / 〈dj |p〉 otherwise. Moreover, in the latter case,
xi,j = di,j (〈ej |p〉 / 〈dj |p〉). Let u = (u1, . . . , un)� denote the vector of utilities
of the traders. Then p is an equilibrium price if

p ≥ 0, ui = 〈ei|p〉 /〈di|p〉, and Du ≤ 1. (1)

In the remainder of this paper, we will refer to a pair of vectors (u,p) that
satisfies Equation (1) as an equilibrium of the Leontief economy (E,D). Then,
an ε-approximate equilibrium of the Leontief economy (E,D) is a pair of utility
and price vectors (u,p) satisfying:

⎧
⎨

⎩

ui ≥ (1 − ε) 〈ei|p〉 / 〈di|p〉 , ∀i (C1)
ui ≤ (1 + ε) 〈ei|p〉 / 〈di|p〉 , ∀i. (C2)

Du ≤ (1 + ε) · 1. (C3)

(C1) states that all traders are approximately satisfied. (C2) states that budget
constraints approximately hold. (C3) states that the demands approximately
meet the supply.

If (u,p) is an equilibrium of (E,D), so is (u, αp) for every α > 0. Simi-
larly, if (u,p) is an ε-equilibrium of (E,D), so is (u, αp) for every α > 0. So
we can assume ‖p‖1 = 1. For approximate equilibria, we assume without loss
of generality that u and p are strictly positive to avoid division-by-zero — a
small perturbation of an approximate equilibrium is still a good approximate
equilibrium.

3.2 Reduction from NASH to LEONTIEF

Let (Ā, B̄) be a two-person game in which each player has n strategies. Below
we assume Ā ∈ R

n×n
[1,2] and B̄ ∈ R

n×n
[1,2] . We use the reduction introduced by
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Codenotti, Saberi, Varadarajan, and Ye [4] to map a bimatrix game to a Leontief
economy. This reduction constructs a Leontief economy with (Ē, D̄) = π(Ā, B̄)
where the endowment matrix is simply Ē = I2n, the (2n)× (2n) identity matrix
and the utility matrix is given by

D̄ =
(

0 Ā
B̄ 0

)

.

(Ē, D̄) is a special form of Leontief exchange economies [17,4]. It has 2n goods
and 2n traders. The jth trader comes to the market with one unit of the jth-
good. In addition, the traders are divided into two groups M = {1, 2, ..., n} and
N = {n + 1, ..., 2n}. Traders in M only interests in the goods associated with
traders in N and vice versa.

Codenotti et al [4] prove that there is a one-to-one correspondence between
Nash equilibria of the two person game (A,B) and market equilibria of Leontief
economy (Ē, D̄). It thus follows from the theorem of Nash [11], that the Leontief
economy (Ē, D̄) has at least one equilibrium.

We will prove the following extension of their result in the next section.

Lemma 1 (Approximation of Games and Markets). For any bimatrix
game (Ā, B̄), let (Ē, D̄) = π(Ā, B̄). Let (u,w) be an ε-approximate equilibrium
of (Ē, D̄) and assume u = (x�,y�)� and w = (p�,q�)�. Then, (x,y) is an
O (n

√
ε)-relatively-approximate Nash equilibrium for (Ā, B̄).

Apply Lemma 1 with ε = n−h for a sufficiently large constant h and Theorem1,
we can prove one of our main results of this paper.

Theorem 2 (Market Approximation is Likely Hard). The problem of
finding a 1/nΘ(1)-approximate equilibrium of a Leontief economy with n goods
and n traders is PPAD-hard. Thus, if PPAD is not in P, then there is no
algorithm for finding an ε-equilibrium of Leontief economies in time poly(n, 1/ε).

3.3 Smoothed Market

In the smoothed analysis of the Leontief market exchange problem, we assume
that entries of the endowment and utility matrices is subject to slight random
perturbations.

Consider an economy with
(
Ē ∈ R

n×n
[0,2] , D̄ ∈ R

n×n
[0,1]

)
. For a σ > 0, a perturbed

economy is defined by a pair of random matrices
(
ΔE,ΔD

)
where δE

i,j and δD
i,j

are independent random variables of magnitude σ. Two common models are
the uniform perturbation and Gaussian perturbation. In the uniform perturba-
tion with magnitude σ, a random variable is chosen uniformly from the interval
[−σ, σ]. In the Gaussian perturbation with variance σ2, a random variable δ is
chosen with density e−δ2/2σ2

/(
√

2πσ).
Let D = max

(
D̄ + ΔD,0

)
and let E = max

(
Ē + ΔE ,0

)
. Although we can

re-normalize E so that the sum of each row is equal to 1, we choose not to do so
in favor of a simpler presentation. The perturbed game is then given by (E,D).
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Following Spielman and Teng [14], the smoothed complexity of an algorithm
W for the Leontief economy is defined as following: Let TW (E,D) be the com-
plexity of algorithm W for solving a market economy defined by (E,D). Then,
the smoothed complexity of algorithm W under perturbations Nσ() of magni-
tude σ is

SmoothedW [n, σ] = max
D̄∈R

n×n
[0,2] ,Ē∈R

n×n
[0,1]

EE←Nσ(Ē),D←Nσ(D̄) [TW (E,D)] ,

where we use E ← Nσ(Ē) to denote that E is a perturbation of Ē according to
Nσ(Ē).

An algorithm W for computing Walrasian equilibria has polynomial smoothed
time complexity if for all 0 < σ < 1 and for all positive integer n, there exist
positive constants c, k1 and k2 such that

SmoothedW [n, σ] ≤ c · nk1σ−k2 .

The Leontief exchange economy is in smoothed polynomial time if there exists
an algorithm W with polynomial smoothed time-complexity for computing a
Walrasian equilibrium.

To relate the complexity of finding an approximate Nash equilibrium of two-
person games with the smoothed complexity of Leontief economies, we examine
the equilibria of perturbations of the reduction presented in the last subsection.
In the remainder of this subsection, we will focus on the smoothed complexity
under uniform perturbations with magnitude σ. One can similarly extend the
results to Gaussian perturbation with standard deviation σ.

Let (Ā, B̄) be a two-person game in which each player has n strategies. Let
(Ē, D̄) = π(Ā, B̄). Let

(
ΔE,ΔD

)
be a pair of perturbation matrices with entries

drawn uniformly at random from [−σ, σ]. The perturbed game is then given by
E = max

(
Ē + ΔE ,0

)
and D = max

(
D̄ + ΔD,0

)
.

Let Πσ(Ā, B̄) be the set of all (E,D) that can be obtained by perturbing
π(Ā, B̄) with magnitude σ. Note that the off-diagonal entries of E are between
0 and σ, while the diagonal entries are between 1 − σ and 1 + σ. In the next
section, we will prove the following lemma.

Lemma 2 (Approximation of Games and Perturbed Markets). Let
(Ā, B̄) be a bimatrix game with Ā, B̄ ∈ R

n×n
[1,2] . For any 0 < σ < 1/(8n), let

(E,D) ∈ Πσ(Ā, B̄). Let (u,w) be an ε-approximate equilibrium of (E,D) and
assume u = (x�,y�)� and w = (p�,q�)�. Then, (x,y) is an O(n

√
ε+n1.5√σ)-

relatively-approximate Nash equilibrium for (Ā, B̄).

We now follow the scheme outlined in [15] and used in [3] to use perturbations
as a probabilistic polynomial reduction from the approximation problem of two-
person games to market equilibrium problem over perturbed Leontief economies.

Lemma 3 (Smoothed Leontief and Approximate Nash). If the problem of
computing an equilibrium of a Leontief economy is in smoothed polynomial time
under uniform perturbations, then for any 0 < ε′ < 1, there exists a randomized

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On the Approximation and Smoothed Complexity 103

algorithm for computing an ε′-approximate Nash equilibrium in expected time
polynomial in n and 1/ε′.

Proof. Suppose W is an algorithm with polynomial smoothed complexity for
computing a equilibrium of a Leontief economy. Let TW (E,D) be the complexity
of algorithm W for solving the market problem defined by (E,D). Let Nσ()
denotes the uniform perturbation with magnitude σ. Then there exists constants
c, k1 and k2 such that for all 0 < σ < 1,

max
Ē∈R

n×n
[0,1] ,D̄∈R

n×n
[0,2] ,

EE←Nσ(Ē),D←Nσ(D̄) [TW (E,D)] ≤ c · nk1σ−k2 .

Consider a bimatrix game (Ā, B̄) with Ā, B̄ ∈ R
n×n
[1,2] . For each (E,D) ∈

Πσ(Ā, B̄), by Lemma 2, by setting ε = 0 and σ = O(ε′/n3), we can ob-
tain an ε′-approximate Nash equilibrium of (Ā, B̄) in polynomial time from an
equilibrium of (E,D). Now given the algorithm W with polynomial smoothed
time-complexity, we can apply the following randomized algorithm to find an
ε-approximate Nash equilibrium of game (Ā, B̄):
ApproximateNashFromSmoothedLeontief(Ā, B̄)

1. Let (Ē, D̄) = π(Ā, B̄).
2. Randomly choose two perturbation matrices

(
ΔE ,ΔD

)
of magnitude σ.

3. Let D = max
(
D̄ + ΔD,0

)
and let E = max

(
Ē + ΔE ,0

)
.

4. Apply algorithm W to find an equilibrium (u,w) of (E,D).
5. Apply Lemma 2 to get an approximate equilibrium (x,y) of (Ā, B̄).

The expected time complexity of ApproximateNashFromSmoothedLeontief
is bounded from above by the smoothed complexity of W when the magnitude
perturbations is ε′/n3 and hence is at most c · nk1+3k2(ε′)−k2 . �

We can use this randomized reduction to prove the second main result of this
paper.

Theorem 3 (Hardness of Smoothed Leontief Economies). Unless PPAD
⊆ RP, the problem of computing an equilibrium of a Leontief economy is not in
smoothed polynomial time, under uniform or Gaussian perturbations.

4 The Approximation Analysis

In this section, we prove Lemma 2. Let us first recall all the matrices that will
be involved: We start with two matrices (Ā, B̄) of the bimatrix game. We then
obtain the two matrices (Ē, D̄) = π(Ā, B̄) of the associated Leontief economy,
and then perturb (Ē, D̄) to obtain (E,D). Note that Ē = I2n and we can write
D̄ and D as:

D̄ =
(

0 Ā
B̄ 0

)

and D =
(

Z A
B N

)

where for all ∀i, j, zi,j , ni,j ∈ [0, σ] and ai,j − āij , bi,j − b̄i,j ∈ [−σ, σ], Note also
because Ā, B̄ ∈ R

n×n
[1,2] and 0 < σ < 1, A and B are uniform perturbations
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with magnitude σ of Ā and B̄, respectively. Moreover, zi,j and ni,j are 0 with
probability 1/2 and otherwise, they are uniformly chosen from [0, σ].

Let (u,w) be an ε-approximate equilibrium of (E,D). Assume u = (x�,y�)�

and w = (p�,q�)�, where all vectors are column vectors. By the definition of
ε-approximate equilibrium, we have:

⎧
⎨

⎩

(1 − ε)E�w ≤ diag(u)D�w ≤ (1 + ε)E�w,
Zx + Ay ≤ (1 + ε) · 1
Bx + Ny ≤ (1 + ε) · 1

(2)

where diag(u) is the diagonal matrix whose diagonal is u. Since the demand
functions are homogeneous with respect to the price vector w, we assume without
loss of generality that ‖w‖1 = ‖p‖1 + ‖q‖1 = 1.

We will prove (x,y) is an O
(
n
√

ε + n1.5√σ
)
-relatively-approximate Nash

equilibrium of the two-person game (Ā, B̄). To this end, we first list the fol-
lowing three properties of the approximate equilibrium (u,w).

Property 1 (Approximate Price Symmetry). If ‖w‖1 = 1, 0 < ε < 1/2, and
0 < σ < 1/(2n), then

1 − ε − 4nσ

2 − 4nσ
≤ ‖p‖1 , ‖q‖1 ≤ 1 + ε

2 − 4nσ
.

Proof. Recall u = (x�,y�)� and w = (p�,q�)�. By (2) and the fact that the
diagonal entries of E are at least 1 − σ, we have

(1 − ε)(1 − σ) ‖p‖1 ≤ 1�(diag (x)Z�p + diag (x)B�q) = (Zx)�p + (Bx)�q

≤ (1 + ε)‖q‖1 + 〈Zx|p〉 ≤ 3nσ ‖p‖1 + (1 + ε) ‖q‖1 ,

Applying, ‖q‖1 = ‖w‖1 − ‖p‖1 = 1 − ‖p‖1 to the inequality, we have

‖p‖1 ≤ (1 + ε)/ [(1 − ε)(1 − σ) + (1 + ε) − 3nσ] ≤ (1 + ε)/(2 − 4nσ)

Thus, ‖q‖1 = 1 − ‖p‖1 ≥ (1 − ε − 4nσ)/(2 − 4nσ). We can similarly prove
the other direction. �

Property 2 (Approximate Utility Symmetry). If ‖w‖1 = 1, 0 < ε < 1/2, and
0 < σ < 1/(8n), then

(1 − ε)(1 − σ)(1 − ε − 4nσ)
(1 + ε)(2 + 2σ)

≤ ‖x‖1 , ‖y‖1 ≤ (1 + ε)2 + nσ(1 + ε)(2 − 4nσ)
(1 − σ)(1 − ε − 4nσ)

.

Proof. By our assumption on the payoff matrices of the two-person games, 1 ≤
āij , b̄ij ≤ 2, for all 1 ≤ i, j, ≤ n. Thus, 1 − σ ≤ aij , bij ≤ 2 + σ. By (2) and the
fact the diagonal entries of E is at least 1 − σ, we have

xi ≥ (1 − ε)(1 − σ)pi

〈bi|q〉 + 〈zi|p〉 ≥ (1 − ε)(1 − σ)pi

(2 + σ) ‖q‖1 + σ ‖p‖1
≥ (1 − ε)(1 − σ)(2 − 4nσ)pi

(2 + 2σ)(1 + ε)
,
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where the last inequality follows from Property 1. Summing it up, we obtain,

‖x‖1 ≥ (1 − ε)(1 − σ)(2 − 4nσ)
(2 + 2σ)(1 + ε)

‖p‖1 ≥ (1 − ε)(1 − σ)(1 − ε − 4nσ)
(1 + ε)(2 + 2σ)

,

where again, we use Property 1 in the last inequality. On the other hand, from
(2) we have

xi ≤ (1 + ε) 〈ei|w〉
〈bi|q〉 + 〈zi|p〉 ≤ (1 + ε)(pi + σ)

〈bi|q〉 (3)

≤ (1 + ε)(pi + σ)
(1 − σ) ‖q‖1

≤ (1 + ε)(pi + σ)(2 − 4nσ)
(1 − σ)(1 − ε − 4nσ)

. (4)

Summing it up, we obtain,

‖x‖1 ≤ (1 + ε)(2 − 4nσ)
(1 − σ)(1 − ε − 4nσ)

(‖p‖1 + nσ) ≤ (1 + ε)2 + nσ(1 + ε)(2 − 4nσ)
(1 − σ)(1 − ε − 4nσ)

.

We can similarly prove the bound for ‖y‖1. �

Property 3 (Utility Upper Bound). Let s = Zx + Ay and t = Bp + Ny. Let
λ = max {ε, nσ}. Under the assumption of Property 2, if si ≤ (1+ε)(1−σ)−

√
λ,

(similarly ti ≤ (1 + ε)(1 − σ) −
√

λ), then

xi ≤ (1 + ε)(2 − 4nσ)(5
√

λ + σ)
(1 − σ)(1 − ε − 4nσ)

, yi ≤ (1 + ε)(2 − 4nσ)(5
√

λ + σ)
(1 − σ)(1 − ε − 4nσ)

.

Property 3 is a direct corollary of Property 2. We now use these three prop-
erties to prove Lemma 2.

Proof. [of Lemma 2] In order to prove that (x,y) is a δ-relatively approximate
Nash equilibrium for (Ā, B̄), it is sufficient to establish:

⎧
⎨

⎩

x�Āy ≥ (1 − δ) max
‖x̃‖1=‖x‖1

x̃�Āy

y�B̄�x ≥ (1 − δ) max
‖ỹ‖1=‖y‖1

ỹ�B̄�x.
(5)

Let s = Zx + Ay. We observe,

x�Āy = x�(Ay + Zx − Zx + (Ā − A)y) = x�s − x�(Zx + (A − Ā)y)
≥ x�s − ‖x‖1 (‖Zx‖∞ +

∥
∥(A − Ā)y

∥
∥
∞) ≥ x�s − σ ‖x‖1 (‖x‖1 + ‖y‖1)

≥ x�s − 2σ(1 + ε)2 + 2nσ2(1 + ε)(2 − 4nσ)
(1 − σ)(1 − ε − 4nσ)

‖x‖1

= x�s − O(σ) ‖x‖1 ,
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where the last inequality follows from Property 2. Let λ = max(ε, nσ). By Prop-
erty 3, we can estimate the lower bound of 〈x|s〉:

〈x|s〉 =
n∑

i=1

xisi ≥
∑

i:si>(1+ε)(1−σ)−√λ

xisi

≥ [(1 + ε)(1 − σ) −
√

λ](‖x‖1 − n
(1 + ε)(2 − 4nσ)(5

√
λ + σ)

(1 − σ)(1 − ε − 4nσ)
)

≥ ‖x‖1 (1 − O(
√

λ))(1 − n
(1 + ε)(2 − 4nσ)(5

√
λ + σ)

(1 − σ)(1 − ε − 4nσ) ‖x‖1
)

= ‖x‖1 [1 − O(n
√

λ + nσ)].

On the other hand, by (2), we have Ay ≤ (1 + ε)1 and hence

max
‖x̃‖1=‖x‖1

x̃�Āy = ‖x‖1

∥
∥Āy

∥
∥
∞ ≤ (1 + ε + σ ‖y‖1) ‖x‖1 ≤ (1 + ε + O(σ)) ‖x‖1 .

Therefore,

x�Āy ≥ x�s − O(σ) ‖x‖1 ≥ ‖x‖1[(1 − O(n
√

λ + nσ) − O(σ)]

≥ 1
1 + ε + O(σ)

[1 − O(n
√

λ + nσ)] max
‖x̃‖1=‖x‖1

x̃�Āy

= (1 − O(n
√

λ + nσ)) max
‖x̃‖1=‖x‖1

x̃�Āy.

We can similarly prove

y�B̄�x = (1 − O(n
√

λ + nσ)) max
‖ỹ‖1=‖y‖1

ỹ�B̄�x.

We then use the inequalities
√

λ =
√

max(ε, nσ) ≤
√

ε + nσ ≤
√

ε+
√

nσ and
σ ≤

√
σ to complete the proof. �

5 Discussions

Our results as well as the combination of Codenotti, Saberi, Varadarajan, and Ye
[4] and Chen and Deng [2] demonstrate that exchange economies with Leontief
utility functions are fundamentally different from economies with linear utility
functions. In Leontief economies, not only finding an exact equilibrium is likely
hard, but finding an approximate equilibrium is just as hard.

Although, we prove that the computation of an O(1/nΘ(1))-approximate equi-
librium of Leontief economies is PPAD-hard. Our hardness result does not cover
the case when ε is a constant between 0 and 1. The following are two optimistic
conjectures.
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Conjecture 1 (PTAS Approximate LEONTIEF). There is an algorithm to find
an ε-approximate equilibrium of a Leontief economy in time O(nk+ε−c

) for some
positive constants c and k.

Conjecture 2 (Smoothed LEONTIEF: Constant Perturbations). There is an al-
gorithm to find an equilibrium of a Leontief economy with smoothed time com-
plexity O(nk+σ−c

) under perturbations with magnitude σ, for some positive
constants c and k.

References

1. Chen, X., Deng, X.: 3-Nash is PPAD-complete. ECCC, TR05-134 (2005)
2. Chen, X., Deng, X.: Settling the Complexity of 2-Player Nash-Equilibrium. In: The

Proceedings of FOCS 2006, pp. 261–272 (2006)
3. Chen, X., Deng, X., Teng, S.-H.: Computing Nash Equilibria: Approximation and

smoothed complexity. In: The Proceedings of FOCS 2006, pp. 603–612 (2006)
4. Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y.: Leontief economies encode

nonzero sum two-player games. In: The Proceedings of SODA 2006, pp. 659–667
(2006)

5. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Comput-
ing a Nash Equilibrium. In: The Proceedings of STOC 2006, pp. 71–78 (2006)

6. Daskalakis, C., Papadimitriou, C.H.: Three-player games are hard. ECCC, TR05-
139 (2005)

7. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price equilibria. Jour-
nal of Computer and System Sciences 67(2), 311–324 (2003)

8. Deng, X., Huang, L.-S.: Approximate Economic Equilibrium Algorithms. In: Gon-
zalez, T. (ed.) Approximation Algorithms and Metaheuristics (2005)

9. Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. J. Soc.
Indust. Appl. Math. 12, 413–423 (1964)

10. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: The Proceedings of EC 2003, pp. 36–41 (2003)

11. Nash, J.: Noncooperative games. Annals of Mathematics 54, 289–295 (1951)
12. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-

cient proofs of existence. Journal of Computer and System Sciences 48(3), 498–532
(1994)

13. Scarf, H.: The Computation of Economic Equilibria. Yale University Press, New
Haven, CT (1973)

14. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

15. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms and heuristics:
Progress and open questions. In: The Proceedings of Foundations of Computa-
tional Mathematics, pp. 274–342 (2006)

16. Walras, L.: Elements of Pure Economics, or the Theory of Social Wealth (1874)
17. Ye, Y.: On exchange market equilibria with Leontief’s utility: Freedom of pricing

leads to rationality. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp.
14–23. Springer, Heidelberg (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On Coordination Among Multiple Auctions�

Peter Chuntao Liu1 and Aries Wei Sun2

1 Software Institute, Nanjing University, China
peterliu@software.nju.edu.cn

2 Department of Computer Science, City University of Hong Kong
sunwei@cs.cityu.edu.hk

Abstract. Our research is motivated by finding auction protocols to
elegantly coordinate the sellers and buyers when there are multiple auc-
tions. In our model, there are multiple sellers selling different items that
are substitute to each other, multiple buyers each demanding exactly one
item, and a market that is monopolistic competitive. We implement our
auction coordination protocol by polynomial running time algorithms
and establishes its incentive compatibleness.

1 Introduction

In incentive compatible auctions, a buyer’s utility is maximized when he1 reports
his true valuation, without information of other buyers’ strategies. Thus incentive
compatible auctions can be regarded as coordination protocols in which a player
(buyer) can find his best strategy without any prediction or expectation of other
players. This kind of coordination protocol is elegant, and can usually guarantee
an optimal allocation result that maximizes social efficiency.

However, it becomes less obvious how to elegantly coordinate the buyers when
there are multiple auctions available, each managed by a distinct seller. It will
be a difficult task for a buyer to decide how many and which auctions to attend,
because he can not predict which auctions other buyers will attend, a piece of
information now does matter. What if he attended an auction and win nothing,
while he could have won something if he had attended some other auction. What
if he attended multiple auctions and won multiple items, while he demands only
one of them?

The problem of finding a protocol to elegantly coordinate multiple sellers and
buyers has motivated our research presented in this paper.

1.1 The Model

We model the market as monopolistic competitive where there are m sellers and n
buyers. Each seller (auctionner) aj can supply at most sj units of identical items.
The items provided by different sellers are substitute to each other. However, the
items sold by different sellers is allowed to be different. Each buyer b(i) demands
� This research is supported by SRG grant (7001989) of City University of Hong Kong.
1 For convinience, we refer to buyers as males and sellers as females.
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exactly one item from any of the sellers. However, each buyer may have different
valuations for the item from different sellers. Buyer b(i) privately values the item
from seller aj at V

(i)
j .

At first, each buyer b(i) declares V
(i)
j to be v

(i)
j , and submits (v(i)

j , i =
1, 2, . . . , n, j = 1, 2, . . . , m) to the market coordinator as its bid.

After that, the market coordinator announces the list of winners, from which
seller each winner have the item, and the price the winner should pay to that
seller for the item. If buyer b(i) have won an item from seller aj , then w

(i)
j = 1

and W (i) = j, b(i) should pay a price p(j) to seller aj , and he is called a winner .
If buyer b(i) has not won any item from seller aj , then w

(i)
j = 0. If buyer b(i) has

not won any item from any seller, then W (i) = 0 and it is called a loser . For
convinience, we define v

(i)
0 = 0, i = 1, 2, . . . , n.

We name our auction coordination protocol as Coordination Protocol For
Auctions With Unit Demand, or CPA-U for short.

1.2 Our Work

In this paper, we present a coordination protocol among multiple auctions. Our
model has been formallized in §1.1.

The preliminary part of our paper is in §2. §2.1 gives some basic definitions.
Since the mechanism design part of our protocol is based on the VCG mecha-
nism, we briefly introduce the VCG mechanism in §2.2 to facilitate the incentive
compatible analysis of our protocol. We briefly introduce the minimum cost flow
problem in §2.3, whose solution will be used by our algorithm to produce an
optimal allocation result.

The algorithmic solution presented in §3 is divided in to two steps. The first
step is to determine the allocation, with the aim to maximize the social efficiency.
The second step is to determine the price each buyer should pay, with the aim to
make the protocol incentive compatible. All of our algorithm are in polynomial
running time.

We prove the correctness of our approach in §4 by two steps. The first step
in §4.1 proves that the allocation result maximizes social efficiency. The second
step in §4.2 establishes the incentive compatibleness of our protocol.

§5 concludes the paper, discusses its application in C2C2 e-commerce websites,
and gives an open problem as our future works.

1.3 Related Works

We reduce the auction problem into an equivalent minimum cost flow problem
in order to get an optimal allocation. The minimum cost flow problem is one of
the most important problems within network optimization research. [3] was the
first to solve the minimum cost flow problem in polynomial time. Their Edmonds-
Karp Scaling Technique, which reduces the minimum cost flow problem to a
sequence of shortest path problems, has been followed by many researchers. In
2 Customer to customer.
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this paper, we take the algorithm from [4] to solve the shortest path problem in
O(|E| + |V | · log(|V |)) time and apply the scaling technique from [9] to reduce
the minimum cost flow problem to a sequence of O((|E|+ |V |) · log(|V |)) shortest
path problems.

The mechanism design part of our protocol is based on the Vickrey-Clark-
Groves (VCG [1,5]) mechanism, which generalizes the Vickrey[11] auction to
the case of heterogeneous items, and is “arguably the most important positive
result in mechanism design”[8].

A similar but different way to coordinate the market when there are multiple
buyers and sellers is known as double auction. Some of the most representative
works in this field are [7,10,12,6,2]. In double auctions, the market is completely
competitive, i.e. the items provided by the sellers are all the same. Whereas in
our model, the market is monopolistic competitive, the sellers sell different items
that are substitute to each other, and the buyers may have different valuations
for different items.

2 Preliminaries

This section is the preliminary part of the paper. §2.1 adapts some definitions
from the mechanism design literature to our model for analytical convinience
in later sections. §2.2 briefly introduce the VCG mechanism to facilitate the
incentive compatible analysis of our protocol. §2.3 briefly introduce the minimum
cost flow problem, whose solution will be used by our algorithm to produce an
optimal allocation result.

2.1 Definitions

Definition 1 (Feasible). An allocation is feasible, if and only if it satisfies both
the demand and supply constraints:

1. Demand Constraint: Each buyer is allocated at most one item.
2. Supply Constraint: The number of items each seller aj should provide ac-

cording to the allocation result does not exceed its supply ability sj.

Definition 2 (Social Efficiency). Given an allocation result, the social ef-
ficiency e is defined as: e =

∑n
i=1 v

(i)
W (i) , where v

(i)
j is buyer b(i)’s reported

valuation (or bid) on an item from seller aj, w
(i)
j is the number of items buyer

b(i) has won from seller aj.

Definition 3 (Incentive Compatible, Truthful). An auction is incentive
compatible, or truthful, for buyers, if and only if sincere bidding, i.e. reporting
v
(i)
j = V

(i)
j , is each buyer b(i)’s dominant strategy.

Definition 4 (Optimal). We say an allocation result is optimal if it is feasible
and it maximizes the social efficiency.
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2.2 The VCG Mechanism

Generalizing the Vickrey[11] auction to the case of heterogeneous items, the
celebrated Vickrey-Clark-Groves (VCG [1,5]) mechanism is arguably the most
important positive result in mechanism design. Our auction is partially based on
the VCG mechanism. In this subsection, we briefly introduce the VCG mecha-
nism to facilitate our analysis.

Definition 5. We say that an auction is a VCG Mechanism [1,5] if

1. The allocation result maximizes the social efficiency e.
2. Each buyer b(i)’s price p(i) is determined by the VCG payment formula:

p(i) = ewoi − (e − e(i)).

where e and ewoi are the maximum social efficiency with and without participa-
tion of b(i), respectively. e(i) is buyer b(i)’s reported valuation of the allocation
result.

Notice that in our model e(i) = v
(i)
W (i) .

Theorem 1 (VCG Incentive Compatibleness [1,5]). Assume that the bid-
ders have pure private values for an arbitrary set of items, then sincere bidding is
a weakly dominant strategy for every bidder in the Vickrey-Clarke-Groves mech-
anism, yielding an efficient outcome.

2.3 The Minimum Cost Flow Problem

The minimum cost flow problem is concerned with finding a network flow of a
designated size on a given network while observing the capacity constraints. In
the graph G = (V, E) representing the flow network, there are a source vertex
s, a termination vertex t, and some other vertices. Each edge has a maximum
allowed capacity which can not be exceeded. Each edge also has a value repre-
senting the cost of each unit of flow. The cost of sending x units of flow through
an edge where the cost value per unit is v equals to x × v. The problem is to
find a flow to send at least f units from source vertex to termination vertex
such that the cost is minimized while observing the capacity constraint of every
edge.

[3] was the first to solve the minimum cost flow problem in polynomial time.
They have used a technique called “Edmonds-Karp Scaling” to reduce the min-
imum cost flow problem to a sequence of shortest path problems. The technique
has been followed by many researchers.

In our algorithm presented in Algorithm 1, we take the algorithm from [4]
to solve the shortest path problem in O(|E| + |V | · log(|V |)) time and apply
the scaling technique from [9] to reduce the minimum cost flow problem to a
sequence of O((|E| + |V |) · log(|V |)) shortest path problems.
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Algorithm 1. Minimum Cost Flow
Input: f the designated flow size; G = (V, E) representing the flow

network.
Output: A solution to the minimum cost flow problem

Apply the scaling technique from [9] to reduce the minimum cost flow1

problem to a sequence of shortest path problems;
Solve the shortest path problems by algorithm in [4];2

Form a solution to the minimum cost flow problem;3

Proposition 1. The running time of Algorithm 1 is

O((|E| + |V |) · log(|V |) · (|E| + |V | · log(|V |)))

where V is the set of vertices and E is the set of edges.

3 Algorithm For CPA-U Protocol

In this section, we present three algorithms related to the CPA-U protocol. Al-
gorithm 2 reduces the social efficiency optimization problem to the minimum cost
flow problem introduced in §2.3. Algorithm 3 determines the allocation among
buyers and sellers, and calculates the resulting social efficiency. Finally, Algo-
rithm 4 solves the incentive compatible pricing problem and presents a complete
solution to the auction coordination problem under our model introduced in
§1.1. We later establish the optimality and incentive compatibleness of CPA-U
in §4. The running times analysis of the three algorithms are quite straight for-
ward. The detailed analysis are omitted to save space and are certainly available
upon our readers’ requests.

Algorithm 2. CPA-U To Min-Cost-Flow Reduction

Input: sj , v
(i)
j ; j = 1, 2, . . . , m; i = 1, 2, . . . , n.

Output: A graph G = (V, E) and a desired flow f .
f ← min(

∑m
j=1 sj , n);1

V ← {s, t} ∪ (∪n
i=1{b(i)}) ∪ (∪m

j=1{aj});2

E ← (∪n,m
i=1,j=1{(b(i), aj)}) ∪ (∪n

i=1{(s, b(i))}) ∪ (∪m
j=1{(aj, t)});3

for i=1 to n and j=1 to m do4

Set (b(i), aj) with cost −v
(i)
j and capacity 1;5

Set (s, b(i)) with cost 0 and capacity 1;6

Set (aj , t) with cost 0 and capacity sj ;7

end8
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Proposition 2. The running time of the Algorithm 2 is O(m × n), where m is
the number of time sellers and n is the number of buyers.

Algorithm 3. CPA-U Allocation

Input: si, v
(i)
j ; j = 1, 2, . . . , m; i = 1, 2, . . . , n.

Output: Social Efficiency e; W (i), j = 1, 2, . . . , m; .

Run Algorithm 2 to convert the input of an allocation problem to the input1

of an minimum cost flow problem;
Run Algorithm 1 to solve the minimum cost flow problem;2

for i=1 to n and j=1 to m do3

W (i) ← j × (b(i), aj).f low;4

end5

e ←
∑n

i=1 v
(i)
W (i) ;6

Proposition 3. The running time of Algorithm 3 is:

O(m · n · log(m + n) · (m · n + (m + n) · log(m + n)))

where m is the number of sellers and n is the number of buyers.

The pricing algorithm is based on the VCG mechanism. The intuition is that
each buyer pays the difference between the sum of the individual efficiency of all
other buyers when it is not present and when it is present, or the decrement in
all other buyers’ efficiency caused by its participation in the auction.

Algorithm 4. CPA-U Protocol

Input: v
(i)
j ; j = 1, 2, . . . , m; i = 1, 2, . . . , n.

Output: Allocations W (i); Prices p(i); j = 1, 2, . . . , m; i = 1, 2, . . . , n.

(e, (W (i))n) ← Run Algorithm 3;1

for i=1 to n do2

ewoi ← Run Algorithm 3 to obtain the maximum social efficiency3

without the existence of buyer b(i);
p(i) ← e − v

(i)
W (i) − ewoi;4

end5

Proposition 4. The running time of Algorithm 4 is:

O(m · n2 · log(m + n) · (m · n + (m + n) · log(m + n)))

where m is the number of sellers and n is the number of buyers.

4 Economic Analysis

In this section, we establish the optimality and incentive compatibleness of our
CPA-U protocol.
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4.1 Optimality

Lemma 1. There exists an social efficiency maximizing allocation in which the
total number of sold units equals to f = min(

∑m
i=1 sj, n).

Proof. We observe that in a feasible allocation, allocating one more unit of item
to a buyer will never make the social efficiency decrease. Thus for any feasible
allocation that maximizes social efficiency and the total sold item is less than
f , sell one more unit will still result in an allocation that is both feasible and
maximizes the social efficiency.

On the other hand, the maximum possible number of sold items is f . Thus
all feasible allocation must sell no more than f units.

Thus the argument is done. �
Lemma 2. An allocation is feasible if and only if the corresponding network
flow resulted from Algorithm 2 is feasible.

Proof. By Definition 1, an allocation is feasible if and only if it satisfies both the
demand and supply constraints, i.e.:

1. Demand Constraint: Each buyer is allocated at most one item.
2. Supply Constraint: The number of items each seller aj should provide ac-

cording to the allocation result does not exceed its supply ability sj.

If the above constraints are not satisfied, then the corresponding flow in net-
work resulted from Algorithm 2 is not fesible, since there must exist an edge
starting from source vertex s or ending at termination vertex t whose flow is
larger than its capacity.

On the other hand, if the above constraints are satisfied, then the capacity
constraints of edges starting from source vertex s or ending at termination vertex
t are satisfied. Further, since no buyer can get more than 1 item and the capacity
of every edge starting from a buyer vertex and ending at a seller vertex equals to
1, it is not possible that any of these edges’ capacity constraint is broken. Thus
the network flow is feasible.

The above arguments complete the proof. �
Lemma 3. Consider an input into and its corresponding flow network graph
resulted from Algorithm 2, if a flow of size f minimizes the cost in the network,
then it maximizes the social efficiency in the auction.
Proof.

flow cost =
n∑

i=1

m∑

j=1

(−v
(i)
j ) × w

(i)
j

= −
n∑

i=1

m∑

j=1

v
(i)
j × w

(i)
j

= −efficiency

Thus when the cost of the flow is minimized, the social efficiency is
maximized. �
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Theorem 2. The allocation resulted from Algorithm 3 maximizes the social
efficiency.

Proof. Algorithm 3 coverts an input of the coordination protocol into an input
of a corresponding minimum cost flow problem, solve the minimum cost flow
problem by Algorithm 1, and uses the resulting flow network to give the solution
to the auction coordination problem.

By Lemma 1, the converted minimum cost flow problem has a feasible solu-
tion. By Lemma 2, the corresponding allocation is also feasible. And finally, by
Lemma 3, the corresponding allocation maximizes the social efficiency. �

4.2 Incentive Compatibleness

Theorem 3. CPA-U is a VCG mechanism.

Proof. By Theorem 2, the allocation result maximizes the social efficiency.
From Algorithm 4 we know that the price function exhibits the form of the

VCG payment formula.
Thus, CPA-U is a VCG mechanism. �

Corollary 1. CPA-U is incentive compatible.

Proof. The corollary follows from the theorem that that a VCG mechanism is in-
centive compatible (Theorem 1) and the fact that CPA-U is a VCG mechanism
(Theorem 3). �

5 Conclusions, Discussions and Future Works

In this paper, we have studied a coordination protocol among multiple auctions
when the market is monopolistic competitive. Unlike double auction [7,10,12,6,2]
where all sellers sell identical items, our protocol allows the sellers to sell different
items that are substitute to each other, and allows buyers to have different
willingness-to-pay for different items. Analysis show that our protocol is incentive
compatible for buyers, optimal, and implementable in polynomial time.

Our protocol is of practical value to the C2C e-commerce websites, such as
eBay, Taobao, and Yahoo auctions. Buyers will benefit a lot from our proto-
col. Becuase with the help of our protocol, the complexity of decision making
is dramatically decreased due to its incentive compatibleness, the risk of win-
ning no items is reduced, and the risk of winning redundant items is eliminated
completely. Thus buyers are encouraged to participate in C2C e-commerce more
often. And it is the active participation of buyers that determines the value of a
C2C e-commerce website to the sellers.

The CPA-U protocol is not yet a generalization of incentive compatible
double auction protocols, because such protocols usually address the incentive
compatibleness for both buyers and sellers, while our protocol only address the
incentive compatibleness for buyers. It remains an interesting open problem
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whether both seller and buyer incentive compatibleness can be achieved in the
monopolistic competitive market studied in our paper. We plan to solve this
problem as our future works.

Acknowledgments. We would like to thank Prof. Xiaotie Deng from City
University of Hong Kong for stimulating discussions and invaluable comments.
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Abstract. This paper proposes a generalized on-line risk-reward model,
by introducing the notion of the probabilistic forecast. Using this model,
we investigate the on-line rental problem. We design the risk rental
algorithms under the basic probability forecast and the geometric dis-
tribution probability forecast, respectively. In contrast to the existing
competitive analyses of the on-line rental problem, our results are more
flexible and can help the investor choosing the optimal algorithm accord-
ing to his/her own risk tolerance level and probabilistic forecast. More-
over, we also show that this model has a good linkage to the stochastic
competitive ratio analysis.

1 Introduction

In Karp’s ski-rental problem [1], we wish to acquire equipment for skiing. How-
ever, since we do not know how many times we will use this equipment, we do
not know if it is cheaper to rent or to buy. Let c be the rental price every time,
and p the buying price. For simplicity, assume that c | p and c, p > 0. It is easy
to prove that the algorithm that achieves the optimal competitive ratio, 2− c/p,
is to rent for the first p/c−1 times, and then buy the equipment in the p/c time.

Considering the real-life situation of the rental problem, many researchers ex-
panded Karp’s ski-rental problem. Irani and Ramanathan [2] studied the rental
algorithm under the condition that the buying price is fluctuated but the rental
price remains unchanged. Xu [3] further discussed the rental algorithm under the
circumstance that the buying price and rental price both fluctuate. EI-Yaniv et
al [4] introduced the interest rate factors to the on-line rental problem. Xu [3]
considered the discount factors in the on-line rental study. Some more compli-
cated versions based on the ski-rental problem also have been presented, such as
EI-Yaniv and Karp’s replacement problem [5] and Fleischer’s Bahncard problem
[6].
� This research is supported by NSF of China (No. 70525004, 70121001 and 70471035)

and PSF of China (No. 20060400221).
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Moreover, some researchers also focus on constructing more flexible competi-
tive analysis frameworks to study on-line rental algorithm. al-Binali [7] proposed
the notable on-line risk-reward model. Fujiwara and Iwama [8], and Xu et al [9]
integrated probability distribution into the classical competitive analysis [10] to
study the rental problem. The main purpose of this paper is to propose a gener-
alized on-line risk-reward model under the probability forecast. We also show a
good linkage of our model to the existing competitive analysis frameworks. The
rest of this paper is organized as follows. In Section 2, we proposes a generalized
on-line risk-reward model, by introducing the notion of the probabilistic fore-
cast. In Section 3, we design the risk rental algorithm under the basic probability
forecast. In Section 4, we study the risk rental algorithm under the geometric
distribution probability forecast. Concluding remarks and future research are
included in Section 5.

2 On-Line Risk-Reward Model Under Probabilistic
Forecast

In 1985, Sleator and Tarjian [10] proposed the concept of the competitive ratio
to study on-line problems, by comparing the performance of on-line algorithms
to a benchmark (optimal off-line) algorithm. During this classical competitive
analysis, there are an algorithm set S for the on-line decision-maker and a uncer-
tain information set I dominated by the off-line opponent. The on-line decision-
maker’s goal is to design a good algorithm A ∈ S to deal with the uncertainty
input sequence σ ∈ I of the off-line rival. For a known sequence σ, let Copt(σ)
be the total cost of the optimal off-line algorithm to complete σ. For an on-line
algorithm A, if there are constants λA and ζ satisfying

CA(σ) ≤ λACopt(σ) + ζ

for any σ ∈ I, then A is called a λA-competitive algorithm and λA is called the
competitive ratio of A, where CA(σ) is the total cost taken with algorithm A to
complete σ. That is to say, λA = sup

σ∈I

CA(σ)
Copt(σ) . We denote λ∗ = inf

A∈S
(λA) as the

optimal competitive ratio for the on-line problem. If λA∗ = λ∗, then A∗ is called
the optimal on-line algorithm.

The above competitive analysis is the most fundamental and significant ap-
proach, yet it is not very flexible, especially in the economic management issues,
many investors want to manage their risk. Al-Binali [9] first defined the concepts
of risk and reward for on-line financial problems. Al-Binali defined the risk of
an algorithm A to be rA = λA

λ∗ . The greater the value of rA, the higher the risk
of A. Let F ⊂ I be a forecast, then denote λA = sup

σ∈F

CA(σ)
Copt(σ) as the restricted

competitive ratio of A restricted to cases when the forecast is correct. The op-
timal restricted competitive ratio under the forecast F is λ∗ = inf

A∈S
(λA). When

the forecast is correct, Al-Binali defined the reward of the algorithm A to be
fA = λ∗

λA
.
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The above reward definition is based on the certain forecast that is described
to be a subset of I. When the forecast selected is correct, it will bring reward;
otherwise bring risk. This paper extends the certain forecast to the probabil-
ity forecast. Let F1, F2, ..., Fm be a group of subsets of I, where

⋃
Fi = I and

Fi

⋂
Fj = φ for i �= j. Denote Pi as the probability that the on-line deci-

sion maker anticipates that σ ∈ Fi, where
∑m

i=1 Pi = 1. We call {(Fi, Pi)|i =
1, 2, ..., m} a probability forecast. Let λA,i = sup

σ∈Fi

CA(σ)
Copt(σ) be the restricted com-

petitive ratio under the forecast Fi. Let RA,i = λ∗

λA,i
be the reward after the

success of the forecast Fi. Based on this, we define λ̃A =
∑m

i=1 PiλA,i as the re-
stricted competitive ratio under the probability forecast {(Fi, Pi)|i = 1, 2, ..., m},
and define R̃A = λ∗

�λA
as the reward under the probability forecast.

The reward definition based on the probability forecast has some desired prop-
erties.

Theorem 1. For any A ∈ S, min
i

{RA,i} ≤ R̃A ≤ max
i

{RA,i}.

Proof. Since λ̃A =
∑m

i=1 PiλA,i, min
i

{λA,i} ≤ λ̃A ≤ max
i

{λA,i}. Consequently,

min
i

{λ∗/λA,i} ≤ λ∗/λ̃A ≤ max
i

{λ∗/λA,i}, that is min
i

{RA,i} ≤ R̃A ≤ max
i

{RA,i}.

Let {(Fi, Pi)|i = 1, 2, ..., m} be a probability forecast. We divide Fi into Fi,1 and
Fi,2, where Fi,1 ∪ Fi,2 = Fi and Fi,1

⋂
Fi,2 = φ. We also divide Pi into Pi,1 and

Pi,2, where Pi,1 +Pi,2 = Pi. In this way, we can construct a more detailed proba-
bility forecast based on {(Fi, Pi)|i = 1, 2, ..., m}, that is
{(F1, P1), (F2, P2), ..., (Fi−1, Pi−1), (Fi,1, Pi,1), (Fi,2, Pi,2), (Fi+1, Pi+1)..., (Fm, Pm)}.

Denote ˜̃
RA = λ∗

�

�λA

as the reward under the newly constructed probability forecast.

Theorem 2. For any A ∈ S, R̃A ≤ ˜̃
RA.

Proof. From the definition of the restricted competitive ratio, we know that
λA,i1 ≤ λA,i and λA,i2 ≤ λA,i. Besides Pi,1 + Pi,2 = Pi, thus λ∗

�RA
− λ∗

�

�RA

=

PiλA,i − Pi,1λA,i1 − Pi,2λA,i2 ≥ 0, that is R̃A ≤ ˜̃
RA.

Theorem 2 shows that if a probability forecast can be described more de-
tailedly, the reward under the probability forecast will be greater.

Based on these newly introduced concepts, we propose a generalized risk-
reward model under the probability forecast. If r is the risk tolerance level of
the on-line decision maker (where r ≥ 1 and higher values of r denote a higher
risk tolerance), then denote Sr = {A|λA ≤ rλ∗} by the set of all algorithms
with the risk tolerance level r. Our main aim is to look for an optimal risk
algorithm A∗ ∈ Sr that maximizes the reward under the probability forecast
{(Fi, Pi)|i = 1, 2, ..., m}, that is R̃A∗ = sup

A∈Sr

λ∗

�λA
. The mathematic model can be

described as follows: {
max

A
R̃A = λ∗

�λA

s.t λA ≤ rλ∗
. (1)
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The steps to use this model can be described as follows.
Step 1: Divide I into F1, F2, ..., Fm, where

⋃
Fi = I and Fi

⋂
Fj = φ for i �= j;

Step 2: Denote Pi as the probability that the on-line decision maker anticipates
that σ ∈ Fi, where

∑m
i=1 Pi = 1;

Step 3: According to definitions, compute the risk and reward under the prob-
ability forecast {(Fi, Pi)|i = 1, 2, ..., m};
Step 4: Set the risk tolerance level to be r;
Step 5: Solve the model (1) to obtain the optimal risk algorithm A∗.

In the following two sections, we will demonstrate the model that we have
just introduced using Karp’s ski-rental problem.

3 Risk Rental Algorithm Under Basic Probability
Forecast

We consider the following deterministic on-line rental algorithm T : rent up to
T − 1 times and buy in T . Let CostT (t) and Costopt(t) denote the cost of the
on-line algorithm T and the cost of the optimal off-line algorithm, respectively,
where t is the total number of the actual leases.

For the off-line rental problem, if t ≥ p/c, then buy; otherwise rent. So we
have that

Costopt{t} =
{

ct 0 ≤ t < p/c
p p/c ≤ t

. (2)

For the on-line problem, if t < T , then always lease. According to on-line
algorithm T (T = 0, 1, 2, ...), then it is not difficult to see that

CostT {t} =
{

ct 0 ≤ t ≤ T
cT + p T < t

. (3)

According to the off-line optimal rental algorithm, we construct a basic prob-
ability forecast, {(F1, P1), (F2, P2)}, as follows.

Forecast F1: F1 = {t : t < p/c}. The probability when F1 appears is P1.
Forecast F2: F2 = {t : t ≥ p/c}. The probability when F2 appears is P2.

Theorem 3. When setting the risk tolerance level r ≥ 2p
2p−c , the optimal risk

rental algorithm under the probability forecast {(F1, P1), (F2, P2)} is

T ∗ =

⎧
⎪⎨

⎪⎩

p/c, P1 > 1/2
p
c

√
P1

1−P1
, p2/((2pr − cr − p)2 + p2) ≤ P1 ≤ 1/2

p2/(2prc − c2r − pc), P1 ≤ p2/((2pr − cr − p)2 + p2)
; (4)

otherwise, when 1 ≤ r ≤ 2p
2p−c ,

T ∗ =
{

p/c, P1 > 1/2
p2/(2prc − c2r − pc), P1 ≤ 1/2 . (5)
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Proof. According to the definition of the competitive ratio, we know that λT =
cT+p

min{cT,p} . Since the risk tolerance level set is r, we have that λT ≤ r(2 − c/p).

When cT ≤ p, we have that λT = cT+p
cT ≤ r(2 − c/p), that is T ≥ p2

2prc−c2r−pc .
When cT > p, we have that λT = cT+p

p ≤ r(2 − c/p), that is T ≤ 2pr−cr−p
c .

Consequently,
p2

2prc − c2r − pc
≤ T ≤ 2pr − cr − p

c
(6)

Denote Sr = [ p2

2prc−c2r−pc ,
2pr−cr−p

c ] as the algorithm set with risk level r.
From the definition of the restricted competitive ratio under the probability fore-
cast, we have that λ̃T =

∑2
i=1 PiλT,i, where λT,i = sup

σ∈Fi

CT (σ)
Copt(σ) . Consequently,

λ̃T =

{
P1

cT+p
cT + cT+p

p (1 − P1), T < p/c

P1 + cT+p
p (1 − P1), T ≥ p/c

. (7)

Solving ∂�λT

∂T , we find that:

(1) when P1 > 1/2, λ̃T is monotony decreasing at T < p/c, and monotony
increasing at T ≥ p/c;

(2) when P1 ≤ 1/2, λ̃T is monotony decreasing at T < p
c

√
P1

1−P1
, and monotony

increasing at T ≥ p
c

√
P1

1−P1
.

From the above monotony properties of λ̃T and equations (6), we can look for
the optimal risk rental algorithm T ∗ that makes λ̃T minimum, that is equations
(4) and (5).

Corollary 1. When P1 = 1, T ∗ = p/c; when P1 = 0, T ∗ = p2/(2prc− c2r − pc).
Corollary 1 shows that our model is a generalized risk-reward framework, com-
pared with one presented in Al-Binali [7].

4 Risk Rental Algorithm Under Geometric Distribution
Forecast

By dividing Fi into Fi,1 and Fi,2 (where Fi,1 ∪ Fi,2 = Fi and Fi,1
⋂

Fi,2 = φ),
and dividing Pi into Pi,1 and Pi,2 (where Pi,1 + Pi,2 = Pi), we construct a
more detailed probability forecast based on {(Fi, Pi)|i = 1, 2, ..., m}, that is
{(F1, P1), (F2, P2), ..., (Fi−1, Pi−1), (Fi,1, Pi,1), (Fi,2, Pi,2), (Fi+1, Pi+1)..., (Fm, Pm)}.

For the rental problem, we can obtain the probability distribution of t, when re-
peatedly dividing {(F1, P1), (F2, P2)} in the above way. Fujiwara and Iwama [8],
and Xu et al [9] integrated probability distribution into the classical compet-
itive analysis, and introduced the concept of the stochastic competitive ratio
(Definition 1) for the on-line rental problem.
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Definition 1. Let the number of leases be a stochastic variable X subject to
some type of probability distribution function P (X = t). The discrete stochastic
competitive ratio is then defined as

˜̃
λT = EX

CostT (X)
Costopt(X)

=
∞∑

t=0

CostT (t)
Costopt(t)

P (X = t), (8)

where P (X = t) is a probability function that is used by the on-line decision
maker to approximate the input structures.

Note. It is easy to find that the definition of the discrete stochastic compet-
itive ratio is consistency of one of the restricted competitive ratio under the
corresponding probability distribution forecast.

For the rental problem, Xu ea tal [9] consider the geometric distribution func-
tion P (X = t) = θt−1(1 − θ), (t = 0, 1, 2, 3, · · · ), where θ is the hazard rate of
continuous leasing in every period, and 1 − θ is the hazard rate of immediately
purchasing in every period. In this paper, we only discuss the situation that

1
1−θ < p/c to illustrate our model.

Let s = p/c. According to equations (2), (3), and (8), we have, for T=0, 1, 2,
3, · · · , s, that

˜̃
λT = (1 − θT ) + (T + s)(1 − θ)

s∑

t=T+1

θt−1

t
+

T + s

s
θs, (9)

and for k = s + 1, s + 2, s + 3, · · · ,
˜̃
λT = (1 − θs) +

(1 − θ)
s

ΣT
t=s+1tθ

t−1 +
T + s

s
θT . (10)

Then we obtain the following result (Theorem 4).

Theorem 4. When setting the risk tolerance level to be r, the optimal risk
algorithm under the geometric distribution forecast is T ∗∗ = 2pr−cr−p

c (we only
discuss the situation that 1

1−θ < s).

Proof. For t < s − 1, we have that

˜̃
λT+1 − ˜̃

λT = −s(1 − θ)
T + 1

θT +
1
s
θs + (1 − θ)Σs

t=T+1
θt−1

t

≤ −s(1 − θ)
T + 1

θT +
1
s
θs +

1 − θ

T + 1
θT − θs

1 − θ

= θT (
1

T + 1
− s(1 − θ)

T + 1
) + θs(

1
s

− 1
T + 1

) < 0

For t ≥ s − 1, we also have that

˜̃
λT+1 − ˜̃

λT = (
1
s

− 1 + θ)θT < 0

Therefore, we have that λT+1 − λT < 0 for any T . Besides, because ˜̃
RT = λ∗

�

�λT

and T ∈ Sr, we have that T ∗∗ = 2pr−cr−p
c .
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5 Conclusions

The classical competitive ratio analysis is the most fundamental and important
framework to study online problems. But it is not very flexible, particularly in
the financial and investment issues (such as on-line rental problem, on-line cur-
rency conversion, on-line auctions problem). Many investors hope to manage the
risk. Sometimes for more reward, they are willing to take certain risk. Therefore,
the notable online risk-reward idea has been proposed by Al-Binali. However,
the existing concept of risk-reward is mainly based on the certainty forecast.
In this paper, we further puts forward the online risk- reward model under the
probability forecast. The probability forecast will not make the simple judgment
about whether the forecast is correct or not, but estimate the probability that the
forecast is correct. The newly introduced model makes the risk-reward idea more
flexible. Moreover, some researchers presented the concept of the stochastic com-
petitive ratio to improve the performance measure of competitive analysis, by
integrating probability distribution into the classical competitive ratio analysis.
This paper shows that our model has a good linkage to the stochastic compet-
itive ratio analysis. We also argue that our model is the generalized stochastic
competitive ratio analysis. By using Karp’s ski-rental problem, we demonstrate
the on-line risk-reward model under the probability forecast. In general, it is hard
for an on-line decision maker to accurately estimate the probability forecast of
the future inputs. Therefore, in our future research, we will explore the on-line
risk-reward model in linguistic environments, by introducing the notations and
operational laws of the linguistic variables.
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Abstract. This paper describes the experiments and results obtained from dis-
tributing an improved insertion heuristic for the scheduling of passengers’ trip 
requests over a fleet of vehicles. The distribution has been obtained by means of 
an agent architecture implemented over Jade. Agents make use of the contract-
net protocol as base coordination mechanism for the planning and scheduling of 
passenger trips. In particular, this paper focuses on the insertion heuristic im-
plementation details within the agent-based architecture and its performance in 
diverse distributed scenarios when varying the number of hosts.  

1   Introduction 

The online Dial-a-Ride problem refers to transport services capable of satisfying per-
sonal transportation requests at relatively low costs, thanks to an integrated planning 
and by using the latest IT infrastructure. Furthermore, the research in the field of 
passenger transportation planning has received an increasing attention in the last dec-
ades due to diverse factors. On one side, traffic jams and pollution are frequent prob-
lems. On the other, the mobility patterns of citizens have changed in the last years. 
Therefore, traditional public-transport planning systems are no longer adequate to 
tackle these newer challenges. Therefore, more flexible transportation alternatives are 
required [1], with planning methodologies capable of considering dynamic and dis-
tributed information in the routing and scheduling process. 

Under this scenario, the present work has been focused into taking a greedy inser-
tion heuristic for the planning and scheduling of trip requests and embedding it on a 
software architecture that adopts the agent paradigm as a way to provide the required 
distribution by means of using the contract-net protocol for coordinating the agents 
through the planning procedure.  

The work is structured as follows. Section 2 starts presenting other works in the 
field for then at section 3 explaining the online Dial-a-Ride problem considered in this 
work. Section 4 outlines the agent architecture and Section 5 explains the planning 
algorithm to be distributed. Then, experimental tests are presented at Section 6 for 
then drawing some conclusions at Section 7.  

2   Related Work 

The Dial-a-Ride Problem (DARP) is a sub-type of the Travel Salesman Problem 
(TSP) and more specifically, the Pickup and Delivery Problem (PDP) often devoted to 
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goods transport. The dial-a-ride problem regards the planning of passenger trips. In 
this field, an important research effort has been devoted to greedy insertion heuristics 
(see [9][17]) which provides good solutions in small time. 

Coslovich et al. [4] have addressed a dynamic dial-a-ride where people might un-
expectedly ask a driver for a trip at a given stop by using a two-phase method and a 
neighborhood of solutions generated off-line. A software system for D-DARP was 
proposed by Horn [8]. The optimization capabilities of the system are based on least-
cost insertions of new requests and periodic re-optimization of the planned routes.  

Newer research tackling the dynamic problem tends to use a distributed market-
based philosophy based in the Contract-Net Protocol (CNP) ((see [3][7] and [14]). In 
the soft computing field, we can find the use of an ant-colony based system [15], 
genetic algorithms (GA) for the optimization of the assignment ([10] [18]) and the use 
of fuzzy logic for the travel times ([11] [19]). 

On the other hand, agent technology applied to transportation has been widely re-
searched in literature [7],[12],[13],[16] most of them focused in the transportation of 
goods (e.g. vehicle routing problem, pickup & delivery problem). Although the multi-
agent paradigm [20] appears as a promising technology, capable of providing a flexi-
ble assignment and service, it is hard to find in literature agent architectures devoted 
to the transportation of passengers (e.g. dial-a-ride problem, demand-responsive trans-
port). [12] and [16] present agent-based systems for goods transportation. [12] uses 
the Contract-Net Protocol (CNP) plus a stochastic post-optimization phase to improve 
the result initially obtained. In [16] is presented the Provisional Agreement Protocol 
(PAP), based on the Extended CNP and de-commitment.  

Finally, although the DARP problem is well-known in the research community, 
there is a lack of benchmark data for this specific problem. For the static case, bench-
marks for the Vehicle Routing Problem (VRP) and PDP are usually adapted to fit 
DARP. This situation does no get better for the online or dynamic case in which re-
quests arrive following a certain distribution rather than being known in advance. In 
fact no widely used datasets seem to be available.   

3   The On-Line DARP 

The problem we are treating consists of transport requests coming from a set of cli-
ents which should be satisfied by a heterogeneous fleet. From a mathematical point of 
view the problem corresponds to the on-line (dynamic) version of the Dial-a-ride 
Problem (D-DARP). It consists of a set C of geographically distributed transportation 
requests, coming from customers that should be served by a set of vehicles V. In addi-
tion, this dynamic variant of the DARP problem implies that requests arrive online. 
That is, an immediate-request approach is used, in which the system should process 
the trips as they come and provide an answer back (bus number, pickup and delivery 
times) in a timely way.  

Service requests have to be assigned to vehicles and scheduled according to time 
restrictions. A restriction exists about the maximum number of passengers to carry 
(capacity). Transport requests commonly specify a pick-up and delivery place. They 
also indicate time windows, that is, time intervals within which the client has to be 
picked-up at the origin node and delivered at the destination node. Moreover, the 
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requests can include further descriptions of the desired service like type and number 
of places, shared or exclusive use of the vehicle, wheelchair place use and any of the 
complementary services described before.  

In practice, the dial-a-ride system we are tackling considers transport requests com-
ing from different types of clients that should be satisfied by a homogeneous fleet of 
capacitated vehicles.  

4   The Agent Architecture   

In the following the agent architecture used for distributing the algorithm is presented. 
Figure 1 shows a lower layer with the Jade agent platform [2], which provides a full 
environment for agents to work: an agent management system (AMS), the possibility 
of agent containers in different hosts (distribution), a directory facilitator (DF) provid-
ing yellow-page services, a message transport system (MTS) for supporting commu-
nication between agents and mobility services between containers.   

On top, the agent architecture is built, with Client and Vehicle agents that are inter-
faces for communicating with the involved actors. The Broker provides a matchmak-
ing service and the Map gives support with distances and paths between points.  

The Trip-Request agent is responsible of having the client’s request fulfilled and of 
communicating him about the result and possible changes in the original plan (e.g. 

delays, trip cancellations). The Planner agent is the agent in charge of executing a 
mediation role in the layer. It processes all the client’s requests coming through the 
Trip-request agents. For more details on the agent architecture please refer to [5] and 
for the its design using the agent oriented software engineering (AOSE) methodology 
PASSI please refer to [6]. 

Schedule agents manage the trip plans (work-schedule) of their corresponding ve-
hicles. In practical terms, the agent will have to make proposals upon request and in 
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Fig. 1. The agent architecture for DARP shows the diverse agents involved, all over the Jade 
agent platform 
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case of winning will have to include the trip into its actual plan. Upon changes in-
formed either by the Vehicle agent or Planner agent, the Schedule agent will update 
the plan and reschedule the remaining requests. The schedule agent implements a 
greedy insertion heuristic for routing and scheduling which is further explained in 
Section 5. 

The routing and scheduling functionality provided by the agent architecture is 
based on the contract-net protocol (CNP). The interaction among the agents is as 
follows (see Fig. 1): First, each transportation request coming from a Client is re-
ceived by the corresponding Trip-request agent of the couple, which asks the Planner 
to process it. Next, the Planner processes the request first by obtaining from the Bro-
ker agent the vehicles that match the required profile, and then by making a call for 
trip-proposals to all the corresponding Schedule agents (call for bids in contract-net) 
that represent the different vehicles of the considered fleet. Each schedule agent 
searches for possible trip alternatives within their respective schedule by using the 
algorithm (insertion heuristic) detailed in Section 5. in this way, they send back their 
proposals and the Planner forwards them to the client (through its Trip-request agent) 
for him to select the best alternative. After choosing, the Planner tells the Schedule 
agent that won the proposal to add the trip to its actual schedule and tells the others 
their proposal rejection. 

5   Algorithm Implementation 

As stated before, during the planning process schedule agents make proposals of trip 
insertions which are managed by the planner. Therefore, each of these agents contains 
a scheduling heuristic to search in the state space for suitable alternatives.  The main 
algorithm’s implementation details are explained in the following. 

5.1   Time-Windows  

The model considers a pickup time window [ept, lpt] and a delivery time window [edti, 
ldt] (see Fig. 2). It is considered the specification of a delivery time for each customer. 
This time is assigned to the upper bound of the delivery time window (ldt). The pa-
rameter WS sets the width of all the delivery time windows. In this a way, a vehicle 
serving the customer i must reach the destination node ndi, neither not before the edti 
time, nor after the ldti time. 

The function DRT(NxN) ℜ defines the direct ride time (optimistic time) which 
corresponds to the time spent travelling from ns to nd through the shortest existing 
path. The function MRT(NxN) ℜ, defines the maximum ride time (pessimistic time) 
which  corresponds to the maximum time that can be spent by a client in reaching the 
destination node ndj from the origin node ns. Delivery times define a time window for 
pick-up, the pair (epti, lptf), where epti=edti-MRT(Nsi,Ndi) ∧ lpti=edti-DRTe(Nsi,Ndi). 

5.2   Work-Schedule  

The model used for the vehicles’ work-schedules considers that along the day a vehicle 
can be in any of these three states: at a depot, in travel or inactive. When the vehicle is at  
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Fig. 2. Time-Windows model for clients pickup and delivery intervals 

a depot means that it has not started its service period or has just finished it.  When the 
vehicle is in travel, means that it is actually going to pickup or delivery passengers gen-
erating schedule blocks. As [9] shows, a schedule block corresponds to a sequence of 
pickups and deliveries for serving one or more trip requests. A schedule block always 
begins with the vehicle starting on its way to pick-up a customer and ends when the last 
on-board customer is discharged. 

The third state is when the vehicle is inactive or idle generating a slack time. In this 
case the vehicle is parked and waiting to serve a next customer and then begin another 
schedule block. 

Therefore, a complete vehicle’s work-schedule will have periods of vehicle’s utili-
zation (schedule blocks) and inactive periods (slacks times) in which the vehicle is 
available and waiting. 

5.3   Routing Algorithm 

The routing algorithm used by vehicles (schedule agents) for finding the “optimal” 
sequence of pickups and deliveries is based on the ADARTW algorithm [9], a con-
structive greedy heuristic. ADARTW finds all the feasible ways in which a new cus-
tomer can be inserted into the actual work schedule of a vehicle, choosing the one that 
offers the maximum additional utility according to a certain objective function. 

The search must include all the schedule blocks contained in the vehicle’s work-
schedule. In a block with already d stops (2 per customer) there are (d+1)(d+2)/2 
possible insertions, considering that the customer’s pickup must always precede his 
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Fig. 3. Work-schedule used by vehicles, consisting in sequences of schedule blocks and slacks 
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delivery and that is not possible to pickup a client in one block and deliver him in 
another (because of the block’s definition).  

Figure 3 shows a schedule block that serves 3 customers (h, i, j) while evaluating 
the insertion of a fourth one (customer x). Each of them has their pick-up (+) and 
delivery (-) stops respectively.  

Once we have found that a possibility of insertion is feasible, it is necessary to de-
fine the actual times for those events, that is, the Actual Pick-up Time and the Actual 
Delivery Time. This problem is often mentioned in literature as the scheduling prob-
lem, as once the sequence of trips (route) has been fixed the following step is to de-
fine the exact position where the sequence will be placed in time.  

Commonly, there will be a time interval in which can be inserted, meaning that the 
sequence can be scheduled more early or late in time within that interval. Several 
authors program the actual times as soon as possible for reducing the travel and wait-
ing times of the customers, reason why our implementation does it in this way. 

5.4   Solution Feasibility Processing 

The solution feasibility processing is tightly coupled to the work-schedule model. Within 
the checking algorithm, different restrictions need to be checked for a given potential 
solution. The most important ones are the time windows, the capacity constraints (on 
number and type) and the bounds on the duration of clients’ ride and of vehicle route.  

This represented a challenging aspect of the work, as in general is difficult to find 
in literature the used mechanism for tackling this point. In Jaw et al. 9 is described 
only in general terms and most research papers state a change from the previous work 
but not its specific implementation.  

For a block X with w events representing either a pickup or a delivery of passen-
gers, Jaw’s work presents the following calculations representing how much the 
events can be anticipated/posticipated in time. 

BUP(Xi) = Min ( Min (AT(Xi) – ET(Xi) ), SLK0) 

BDOWN(Xi) = Min (LT(Xi) – AT(Xi) ) 
AUP(Xi) = Min (AT(Xi) – ET(Xi) ) 

ADOWN(Xi) = Min (Min (LT (Xi) – AT(Xi) ), SLKw+1) 

With 0 < i < w+1, SLK0  and SLKw+1 being the (possible) slack periods immedi-
ately preceding and following  the block respectively. ET(Xi), AT(Xi) and LT(Xi) 
represent the early, actual and late times of the event Xi respectively. 

Our developed model is based on the Jaw’s calculations on BUP and ADOWN but 
adds the important idea of intersecting the time windows restrictions along a piece of 
route, allowing to simplify the processing of the time windows feasibility check and 
making it possible to evaluate the insertion of the whole client (pickup and delivery) 
at the same time. 

Therefore, in the case of the implemented insertion heuristic the starting point is 
the schedule block under which to evaluate the insertion of the new client. The Fig. 4 
(a) shows a detailed view when evaluating the insertion of the pickup (X+) and deliv-
ery (X–) of a client. Between the pickup and the delivery are one or more events sepa-
rating them and at the beginning (or ending) of the block is a slack or the bus depot. 
The approach is to divide the schedule block in three sub-blocks A, B and C for the  
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Fig. 4. Feasibility-check model 

events before the pickup, in between and after the delivery respectively. A special 
case is when both events are consecutive meaning that the block B includes only the 
distance from the pickup to the delivery of the new client.  

The Fig. 4 (b) shows the time windows and distances needed for the evaluation and 
intersection. The interval [ETA, LTA] represents the earliest and latest times to which 
the event AM can be shifted (anticipated / posticipated) without violating the time 
window constraints of all the events within its block. A similar thing happens with 
intervals [ETB, LTB] and [ETC, LTC] on the events B1 and C1 for the blocks B and C 
respectively. Therefore, is needed to identify the feasible shift up and shift down for 
each of the three blocks. For the block A are used the BUP and BDOWN of the event 
AM as they consider the previous events, while for the block C the AUP and ADOWN 
of C1 are needed. For block B is needed the AUP and ADOWN for B1 but considering 
only until BN and not the events on block C as the normal calculations would. Then, 
for interval [ETA, LTA] we have: ETA = AT(AM)  - BUP(AM) and LTA = AT(AM) + 
BDOWN(AM). 

A similar thing happens with [ETB, LTB] and [ETC, LTC]. Distance D1+, D2+, D1– 
and D2–  correspond to the distances between the nodes indicated by the respective 
arrows in the figure. The next step is intersecting the time intervals of the three blocks 
and the two time windows coming from the new client’s pickup and delivery events. 
This intersection needs to consider the distances separating each of the five intervals. 
For this reason, a point in the schedule is used as reference and all the intervals are 
translated to that reference obtaining a single time interval [ET, LT]. By using the 
pickup event (X+) of the new client as reference point and following Fig. 4 (b) are 
obtained: 

ET = Max (ETA + D1+ ; ET+ ; ETB - D2+ ; ET– - D1– - DB - D2+ ; ETC - D2– - D1– - 
DB - D2+) 

LT = Min (LTA + D1+ ; LT+ ; LTB - D2+ ; LT– - D1– - DB - D2+ ; LTC - D2– - D1– - 
DB - D2+) 

This [ET, LT] interval represents the feasibility area in which to set the new sched-
ule with respect to the reference point. The actual time for the reference point (X+ in 
this case) must be set and hence the actual times for the whole schedule block can be 
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calculated as they depend on the fixed distances between one event and another. De-
fining the optimal place within this interval corresponds to the scheduling problem 
mentioned before.   

6   Experiment Setup   

As mentioned earlier, the original architecture’s planning approach is based on the 
contract-net protocol (CNP) under self-interested agents. Therefore, Vehicle agents 
pursue the optimization of travelling costs (utility function with total slack time and 
total travel time) and Client agents were oriented towards the maximization of the 
perceived service quality (utility function with excess travel time and waiting time). 
In [5] is presented a comparison of this architecture with a traditional centralized 
system based on a well-known insertion heuristic developed by Jaw et al. [9]. That 
analysis only compares the quality of the solutions obtained but not the processing 
time involved when distributing among diverse hosts. 

All the tests considered the same geographical net which models a small mountain 
community near Ivrea – Italy. 20 demand scenarios were generated, labeled from 
U1.txt to U20.txt, each considering 50 trip requests distributed uniformly in a two-
hour horizon. For each demand scenario 25 runs were carried out. 

Regarding the considered distributed environment, the hosts were PCs with Intel 
Pentium 4 of 2 GHz. with 256 MB Ram, connected through a 10/100 Mb. Router.  

The following operational decisions were adopted: 1) the same utility function and 
scheduling algorithm have been used for all the vehicles, 2) all the clients share the 
same utility function, 3) the available fleet is of 30 identical vehicles with capacity 20, 
4) one depot is used for all the vehicles and 5) in all cases the effectiveness measures 
(utility variables) were weighted with the same value. 

For the simulations were considered an agent devoted to the generation of the Trip-
request agents and another devoted to generating the Schedule agents. In addition, a 
Main agent was in charge of managing all the aspects related to the simulation con-
trol, specifically centered on the generation of the agents, request of output data and 
deletion operations along the diverse runs and scenarios. 

The generation of Trip-request agents (and hence the arrival of trip-requests) to the 
system follows a Poisson distribution. Then, the time between arrivals distributes 
Exponential, E(λ), with lambda in terms of requests per second. 

The agents involved in the simulations were the three involved in the planning 
(Trip-request, Planner and Schedule agents) plus two service providers (Map and 
Broker agents) as Table 1 details below. 

Table 1. Distribution of agents among hosts over the 3 scenarios 

2 hosts 3 hosts 5 hosts Agents 

1 1 1 Map agent  
1 2 2 Trip-request agents  
2 3 3 Schedule agents 
1 1 4 Planner agent 
1 1 5 Broker agent 
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6.1   Hosts Sensibility Experiment 

This first experiment considered evaluating how the way agents distribute among 
several hosts has an impact on performance. More precisely, the focus was settled not 
on schedule agents (which contain the planning heuristic) but on the diverse types of 
agents in order to analyze how the topology of hosts and agents under a contract-net-
protocol-based communication affected the planning response time for each request. 

 Figure 5 shows different curves for 2, 3 and 5 hosts’ configuration. At first sight it 
is possible to see that a big improvement exists when changing from 2 hosts to 3 
hosts, while little improvement is obtained when changing from 3 to 5 hosts. A closer 
look on how agents were distributed – see table 1 – helps to infer that separating Trip-
request and Schedule agents from the rest of agents has a big impact on performance, 
but separating the Planner from the Broker and Map agents on diverse host gets only a 
small improvement in terms of processing time.  

6.2   Lambda Sensibility Experiment 

A second experiment focused in contrasting the effect of changing the lambda (λ) 
coefficient in the overall performance of the planning system in processing a request. 
In Fig. 6 are compared 2 diverse arrival rates; λ=3 and λ=5 requests per second for 
the 3-host and 5-host scenarios. The two curves in the lover part correspond to λ=3 
scenarios while the other two at the top, to λ=5.  

All curves present an increasing trend as expected with a pick around the 45th arri-
val. This is explained by the fact that with each new arrival vehicles increase their 
schedule plans, increasing also the time required to process feasible solutions (trip-
insertion possibilities). The interesting point is in the increasing rate, while with  
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Fig. 5. Processing time for trip requests ordered by arrival at Exp(3) and Exp(5) rates, over 3 
and 5  hosts. The mean times are over the 20 scenarios and their 25 runs each. 
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arrivals at λ=3 the processing time of a request increases at an average rate of around 
10 milliseconds, at λ=5 it increases at a 32 milliseconds rate. 

Besides, it is important to mention that in all cases exists a descending slope by the 
end explained by the fact that requests stop to arrive, lowering the systems conges-
tion. Corresponds to an ending transient phase, reason why this data must not be con-
sidered in the analysis. 

Finally, it is important to highlight that the average quality of the results for the two 
arrival rates and the three hosts’ configurations does not vary that much. In fact, for all 
the 20 demand scenarios, the number of vehicles used and the cost of the solutions pro-
vided were not significantly different when varying arrival rates and number of hosts. 

7   Conclusions 

A distributed planning of trip request based on a greedy insertion heuristic plus the 
contract net protocol has been implemented using an agent architecture. Its performance 
was tested with diverse scenarios of 50 requests, diverse request arrival rates (λ) follow-
ing an exponential distribution and with different number of hosts. Results shows that 
comparable results are obtained and how the average time for processing a single re-
quest increases through time with a higher rate as the λ parameter gets bigger. 

Further work considers extending the present experiments in order to consider 
probability distributions for other events such as delays, no-show of clients and vehi-
cles breakdowns, all of which imply a re-planning process.  
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Fig. 6. Processing time for trip requests ordered by arrival at a rate of Exponential(3), varying 
the number of hosts to 2, and 5. The mean times are over the 20 scenarios and their 25 runs. 
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Abstract. In this paper, we consider a map labeling problem to maxi-
mize the number of independent labels in the plane. We first investigate
the point labeling model that each label can be placed on a given set
of anchors on a horizontal line. It is known that most of the map la-
beling decision models on a single line (horizontal or slope line) can
be easily solved. However, the label number maximization models are
more difficult (like 2SAT vs. MAX-2SAT). We present an O(n log Δ)
time algorithm for the four position label model on a horizontal line
based on dynamic programming and a particular analysis, where n is
the number of the anchors and Δ is the maximum number of labels
whose intersection is nonempty. As a contrast to Agarwal et al.’s re-
sult [Comput. Geom. Theory Appl. 11 (1998) 209-218] and Chan’s re-
sult [Inform. Process. Letters 89(2004) 19-23] in which they provide
(1 + 1/k)-factor PTAS algorithms that run in O(n log n + n2k−1) time
and O(n log n + nΔk−1) time respectively for the fixed-height rectangle
label placement model in the plane, we extend our method to improve
their algorithms and present a (1 + 1/k)-factor PTAS algorithm that
runs in O(n log n+kn log4 Δ+Δk−1) time using O(kΔ3 log4 Δ+kΔk−1)
storage.

1 Introduction

In cartographic literature, the main approach to conveying information concern-
ing what is on the map is to attach texts or labels to geographic features on
the map. Automated label placement subject to the constraint that the labels
are pairwise disjoint is a well-known important problem in geographic informa-
tion systems (GIS). In the ACM Computational Geometry Impact Task Force
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report[4] the map label placement is listed as an important research area. Since
this problem in general is known to be NP-complete, many heuristics or special
cases for which polynomial time algorithms are given have been presented. For
instance, there are many algorithms that have been developed for labeling points
that are on lines[5,9,11,12,19,22] or in a region[7,8,13,14,15,16,17,18,20,21].

Let A denote a set of points {A1, A2, . . . , An} in the plane, called anchors.
Associated with each anchor there is an axis-parallel rectangle, called label. The
point-feature label placement problem or simply point labeling problem, is to de-
termine a placement of these labels such that the anchors coincide with one
of the corners of their associated labels and no two labels overlap. The point
labeling problem for labeling an arbitrary set of points has been shown to be
NP-complete[8,14,15,18] and there were some heuristic algorithms[6,8,21].

There are many variations of the point labeling problem, including shapes of
the labels, locations of the anchors to be labeled and where the labels are placed.
Consider the case that the placement of the labels are restricted. For instance,
one is fixed-position model, denoted 4P model, in which a label must be placed
so that the anchor coincides with one of its four corners; and another is slider
model, denoted 4S model, in which a label can be placed so that the anchor lies
on one of the four boundary edges of the label. The coordinate positions {1, 2, 3,
4} in 4P model denote the corner positions of labels coincident with the anchor,
and the arrows in 4S model indicate the directions along which the label can
slide, maintaining contact with the anchor.

In this paper we consider the case when the anchors lie on a line and are to
be labeled with rectangular labels. This problem has been studied previously
[9,16,19,5]. The prefix 1d or Slope refers to the problem in which the anchors lie
on a horizontal or a sloping line, respectively. Garrido et al.[9] gave linear time
algorithms for 1d4P rectangle label, 1d4S square label, and Slope4P square label
models, and a quadratic time algorithm for Slope4S square label model as well.
They also showed 1d4S rectangle label is NP-complete and consider the maxi-
mization version to maximize the size of labels. Chen et al.[5] further provided
linear time algorithms for the decision version of Slope4P fixed-height(or width)
rectangle label and elastic rectangular label (of a given area) models. They also
presented a lower bound Ω(n log n) time and a different method to maximize
the label size for 1d4S square label model. Maximizing the number of labels that
can be placed or the so-called maximum independent set problem, is yet another
common problem. Although the label size maximization model is as easy as the
decision model, the label number maximization model has been considered to be
harder. Most of cases where we can tackle the decision models in polynomial time
are more or less comparable to 2SAT, and yet the label number maximization
model is relatively more difficult (like MAX-2SAT). In 1998, Agarwal et al.[1]
provided a (1 + 1/k)-factor algorithm that runs in O(n log n + n2k−1) time, for
any integer k ≥ 1, for fixed-height rectangle label placement model in the plane
and an O(log n)-factor approximation algorithm that runs in O(n log n) time
for arbitrary rectangle labels. Poon et al.[19] further considered the weighted
case in which each label is associated with a given weight and provided the
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same approximation result for 4P fixed-height weighted rectangle model. They
also gave a (2+ ε)-factor approximation algorithm that runs in O(n2/ε) time for
1d4S weighted rectangle label. As for arbitrary rectangle label, Berman et al.[2]
presented a �O(logk n)�-factor approximation algorithm that runs in O(nk+1)
time, for any integer k ≥ 2. In 2004, Chan[3] improved the previous results
an gave a (1 + 1/k)-factor algorithm that runs in O(n log n + nΔk−1) time,
where Δ ≤ n denotes the maximum number of rectangles whose intersection
is nonempty, for fixed-height rectangle label model and a �O(logk n)�-factor ap-
proximation algorithm that runs in nO(k/ log k) time for arbitrary rectangle label.

We first investigate the maximization version of the feasible number of labels
when the anchors lie on a horizontal line. That is, we want to maximize the
number of labels whose associated anchors lie on a horizontal line for which a
feasible placement exists that no two labels overlap. In other words, these labels
form an independent set. We refer to this model as Max-1d4P rectangle label
model, or Max-1d4P for short. Since most of the decision model of map labeling
problems on a single line are easily solved in a greedy manner, we are look-
ing for an almost linear time algorithm for the Max-1d4P model. As a contrast
to previous related results[1,3] in which the maximum independent set of label
placement problem in the plane was considered and polynomial time approxi-
mation schemes (PTAS) were provided using the line stabbing technique and the
shifting idea, we present a faster approach based on a different form of dynamic
programming strategy and a particular analysis to solving this Max-1d4P model
in O(n log Δ) time which improves previously known results that run in O(n2)
and O(nΔ) time in the worse case. We also point out an implicit difference
between point labeling problem and label placement problem, mentioned in the
intuitive proof of the reduction[19]. In addition, we further extend our method to
solve the fixed-height rectangle label placement model in the plane and present
a (1 + 1/k)-factor polynomial time approximation scheme (PTAS) algorithm
that runs in O(n log n + kn log4 Δ + Δk−1) time, using O(kΔ3 log4 Δ + kΔk−1)
storage.

This paper is organized as follows. In Section 2, we introduce some definitions.
Then we present in Section 3 an O(n log Δ) time algorithm for the Max-1d4P
model. In Section 4 we specify an implicit difference of point labeling problem
and label placement problem and give a (1+1/k)-factor PTAS algorithm for the
fixed-height rectangle label placement model in the plane. Finally we conclude
in Section 5 with some discussions of future work.

2 Preliminaries

Consider a set of anchors A = {A1, A2, . . . , An} on a horizontal line, and each
anchor Ak is associated with its position (in x-coordinate) xk and label size lk.
The aim is to maximize the number of feasible labels so that they do not overlap
with each other. A feasible solution to the point labeling problem is called a
realization.
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Since we consider the problem on a horizontal line and put the label either
above or below the line, we can simply associate a 2-tuple, namely (a, b), to
represent the current labeling state of a realization R, with R.a = a and R.b = b,
representing respectively the coordinates of the right edge of the rightmost label
above the line and below the line. A realization R will also contain a specification
of the label placement at feasible positions associated with a subset of anchors.
To be more precise, we can use Ai.� ∈ R, where Ai.� ∈ {0, 1, 2, 3, 4} indicates the
label position for anchor Ai included in R, with Ai.� = 0 representing anchor Ai

is not labeled. If R contains k-feasible labels, i.e., it contains k non-zero Ai.�’s,
then R is called a k-realization, and we use R.c to denote the cardinality of
the subset of feasible labels. We shall use the notation R to not only represent a
realization R of A, which corresponds to a subset, �, of feasible anchors, i.e., � ⊆
A, but also use R.a, R.b and R.c to represent the state of its configuration and its
size, respectively. Let us assume that the set of anchors has been ordered so that
their x-coordinates are in strictly increasing order. That is, x1 < x2 < . . . < xn.
Let Ai denote the subset of anchors {A1, A2, . . . , Ai}, for i = 1, 2, . . . , n, and Ri

denote a realization of Ai for some i. An optimal solution is a realization Rn

such that Rn.c is maximum among all possible realizations of An.
We shall process the anchors, and their associated labels, in ascending order of

their x-coordinates, i.e., in the order of A1, A2, . . . , An. Given a realization Ri−1

of Ai−1, and the next anchor, Ai, i > 1, the placements of the label of Ai that
do not overlap the last label both above and below the line in Ri−1 are called
feasible label placements. Before proceeding we define the notion of equivalence
of two realizations:
Definition 1. Given two realizations Ri

1 and Ri
2 of Ai such that Ri

1.c and Ri
2.c

are equal, if {Ri
1.a, Ri

1.b} = {Ri
2.a, Ri

2.b}, we say that the two realizations are
equivalent in size, or simply equivalent to each other.
Based on the above definition, for a realization Ri with Ri.a < Ri.b, we always
swap the upper and lower sides of the realization. That is, a realization will be
represented in a normal form in which the coordinate above the line is no less
than the coordinate below the line, i.e., Ri.a ≥ Ri.b without loss of generality.
Here we define the comparability of two realizations.
Definition 2. For any two realizations Rk

i and Rk
j , 1 ≤ k ≤ n, if the following

statements hold,
(1). Rk

i .c = Rk
j .c, and

(2). Rk
i .a ≤ Rk

j .a, and Rk
i .b ≤ Rk

j .b then we say that the two realizations are
comparable and Rk

i is better than Rk
j . Otherwise, they are incomparable.

Lemma 1. Let R be an optimal realization of A. Suppose Rk
i and Rk

j are two
comparable realizations for Ak and Rk

i is better than Rk
j for some n ≥ k ≥ 1.

If R contains Rk
j as a subset, then there exists another optimal solution that

contains Rk
i .

By using a 2-tuple to represent the labeling state of a realization, we can trans-
form it into a point in the two-dimensional plane. To be more precise, given a
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realization R represented by a 2-tuple (R.a, R.b), we transform it into a point
P (x, y), where x = R.a and y = R.b, in the plane. The two equivalent realiza-
tions will then be transformed into two points that are symmetric with respect
to the line x = y. From now on, we use P.x and P.y to represent the x and y
coordinates of a point P in the plane, and P.c to represent its associated cardi-
nality. We assume the point labeling on a line starts at the origin without loss of
generality, which means the transformed points in the plane are all in the first
quadrant. Using the normal form representation of a realization, all realizations
will be mapped to points that are all located in the first quadrant below the line
x = y.

Based on the comparability definition between two realizations, if one is bet-
ter than the other, then the transformed points will carry the relationship of
domination. That is, if realization Rs is better than realization Rt, then point
Pt dominates1 point Ps in the plane. On the other hand, if they are incom-
parable realizations, the transformed points in the plane do not dominate each
other.

We shall also transform each anchor Ak with its position xk and its given
label size (or length) lk, 1 ≤ k ≤ n, into a point of another kind PAk(xk, yk)
located on line x = y in the plane, that is, xk = yk. We define the operations in
the plane as follows.

Definition 3. Given a point P (x, y) representing a realization and a point PAk

(xk, xk) representing a new label Ak.� of length lk in the plane, xk − lk ≥ x, we
have the following operations depending on how we select the placement of label
Ak.� of the anchor Ak for the realization P .

1. Ak.� = 1, then P (x, y) generates P ′(xk + lk, y).
2. Ak.� = 2, then P (x, y) generates P ′(xk, y).
3. Ak.� = 3, then P (x, y) generates P ′(x, xk).
4. Ak.� = 4, then P (x, y) generates P ′(x, xk + lk).

The cardinality associated with point P ′ will be one more than that with point
P . If the y-coordinate of P ′ is greater than the x-coordinate, we do the swapping
operation to exchange the x- and y- coordinates. We call point P the parent
point of P ′ and the generated point P ′ the child point of P .

Property 1. Given a parent point P (x, y) and a point PAk(xk, xk) with label
length lk,

1. If y > xk, the point cannot apply label at any position.
2. If xk ≥ y > xk − lk, the point can apply label at position 4.
3. If xk − lk ≥ y, the point can apply label at positions 3 and 4.
4. If x > xk, the point can apply label at neither position 1 nor 2.
5. If xk ≥ x > xk − lk, the point can apply label at positions 1 and 4.
6. If xk − lk ≥ x, the point can apply label at positions 1, 2, 3 and 4.

1 If Pt.x ≥ Ps.x, and Pt.y ≥ Ps.y, then Pt is said to dominate Ps.
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3 Point Labeling on a Single Line

We adopt a greedy method to solve the model Max-1d4P, namely, we will
process the anchors in sequential manner, and maintain a set of realizations that
reflect the best possible labeling, ignoring those that are known to be no better
than the present set of realizations, after each anchor is processed. The following
lemma is obvious.

Lemma 2. Given two realizations Ri
s and Ri

t, for i = 1, 2, . . . , n, we will select
Ri

s over Ri
t, either if Ri

s.c > Ri
t.c, or if Ri

s.c = Ri
t.c, and Ri

s is better than Ri
t.

Due to space constraint, we shall skip the proofs. The details of the proofs can
be found in Yu et al.[22].

Lemma 3. Given a realization Ri−1, if both label placements of the next anchor
Ai at positions 2 and 3 (respectively, positions 1 and 4) are feasible, the selection
of label at position 2 (respectively, position 1), above the line will yield a better
realization Ri.

Agarwal et al.[1] provided a standard dynamic programming method to solve
the fixed-height rectangle label placement model in O(n log n + n2k−1) time if
all the rectangles in the plane are exactly stabbed by k horizontal lines. Poon et
al.[19] used a similar approach to solving the fixed-height rectangle 4P model (we
will specify an implicit difference between these two models later). They both
associated a polygonal line consisting of 2k−1 orthogonal segments to specify all
the possible (2k − 1)-dimensional realizations. For the Max-1d4P model, since
all the rectangles are stabbed by two horizontal lines exactly, it only needs a
two-dimensional table R[x, y] which stores the cardinality of the realization R
with R.a = x and R.b = y (as we introduced in Section 2), and their solution
leads to an O(n2) time algorithm. Chan[3] presented a different form of dynamic
programming and improved the time complexity to O(n log n + nΔk−1) for the
same model. The form R[i, S] stores the cardinality of the realization R associ-
ated with the vertical line x = xi and a set S of disjoint rectangles intersecting
the line x = xi, where xi, 1 ≤ i ≤ n, denotes the abscissas of the left boundaries
of all the rectangles, and R is a maximum independent set of rectangles to the
right of x = xi and intersecting none of S with |S| ≤ k − 1. For the Max-1d4P
model, since all the rectangles are exactly stabbed by two horizontal lines, there
is at most Δ choices for |S| = k − 1 (as k = 2), and thus it takes O(nΔ) time.
Although their dynamic programming methods are apparently different, the op-
erations (inserting or discarding the next rectangle) are executed iteratively for
every possible realization. We provide another form of dynamic programming
strategy and tackle the operations for partial representative realizations instead.
It solves the Max-1d4P model in O(n log Δ) time based on a particular analysis
and improves their quadratic time results (O(n2) and O(nΔ), respectively) in
the worse case. We first observe some properties of the model Max-1d4P.

Proposition 1. Given a realization Ri−1, when both placements at label posi-
tions 1 and 2 (respectively, positions 3 and 4) of next anchor Ai are feasible,
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the selection of label at position 2 (respectively, position 3) will yield a better
realization Ri.

Lemma 4. Given a realization Ri−1, if the label placement of the next anchor
Ai at position 3 is feasible, then label of Ai must be included in an optimal
realization Rn that contains Ri−1, or Ai.� 	= 0.

Corollary 1. Given a realization Ri−1, when the label placement of next anchor
Ai at position 2 is feasible, we have Ai.� 	= 0 in an optimal realization Rn.

We introduce our main idea as follows. Let S[i, j] denote a set of incomparable
realizations Rj of cardinality i, for 1 ≤ i ≤ j ≤ n (i > 0 since A1.� = 2 without
loss of generality). We shall apply a dynamic programming method to process the
anchors and record the ’better’ realizations of each possible cardinality. To find
an optimal realization Rn, we may need to maintain intermediate realizations
S[i, j] for 1 ≤ i ≤ j ≤ n, that have the potential leading to an optimal realization.
As we shall show later, for each j ≤ n we only need to maintain at most five
subsets S[k, j], S[k+1, j], S[k+2, j], S[k+3, j], and S[k+4, j] for some k, which
is a key result of this paper. We shall process the table from j = 1 till n and fill
each entry S[i, j] with a set of incomparable realizations at each step.

The realizations in an incomparable set form a ”point chain” in the plane
without having any point in the chain dominate another. When we encounter a
new anchor Aj , some of the points in this chain of cardinality k, for some k, will
generate new child points, thus getting upgraded to a realization of cardinality k+
1, some will remain as non-upgraded with cardinality k, and are kept as potential
candidates without including Aj , leading possibly to an optimal solution, and
some get eliminated due to some new child points upgraded from points of
cardinality k − 1. At the end after anchor An is processed, the realizations in
the non-empty entry S[i, n] with the largest i are optimal solutions.

To sum up, some points in the set S[i, j] may simply move to S[i, j + 1]
without increasing cardinality, following what we call a non-upgrading process.
Other points in the set may generate points which are included in S[i+1, j +1],
whose cardinality is incremented, following what we call an upgrading process.
When a point moves from one entry to another, it should be compared with
other points in the target entry, and only better ones are kept. We repeat such
operations until we have processed all anchors. The following is the algorithm
for the model Max-1d4P.

Algorithm 1M4P. Find the maximum cardinality of map labeling for the model
Max-1d4P.

Input. A set of anchors A = {A1, . . . , An} sorted by x-coordinates and associ-
ated set of labels.

Output. The maximum cardinality of an optimal realization Rn for Max-1d4P.
Method.
0. /*Use dynamic programming method on two parameters S[i, j] with the an-

chor ordering in column and the cardinality of possible solutions in row.
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Initialize the first entry S[1, 1] with the label placement of the first anchor
at position 2, that is, A1.� = 2.*/

1. For j = 2 to n
Let the largest cardinality of non-empty entries in column j − 1 be k;
For i = k down to max{k − 4, 0}

1-1. Classify the points in S[i, j − 1] into upgrading and
non-upgrading classes according to Aj ;

1-2. Move the non-upgraded points into S[i, j];
1-3. Move the upgraded points into S[i + 1, j];
1-4. Compare the newly upgraded points with existing points in

S[i + 1, j] and keep the better ones;
2. Output the largest i of the nonempty entry S[i, n];

In what follows we will prove a few results that help establish the correctness
of our algorithm. Let Ps and Pt be two incomparable points, and PAk(xk, xk)
be a point associated with the next anchor Ak.

(a) (b)

PsPs

Pt Pt

P Ak P Ak

PtPs

P Ak

Fig. 1. Illustration of Lemma 5

Lemma 5. For the following two cases, where Ps and Pt correspond to two
realizations, and the next anchor is Ak associated with PAk(xk, xk),

(a) Ps.x ≥ Pt.x, Ps.y < Pt.y, Ps.c < Pt.c and xk ≥ Pt.y
(b) Ps.y ≥ Pt.y, Ps.x < Pt.x, Ps.c < Pt.c and xk ≥ Pt.x

Pt is better than Ps.

Lemma 6. The points in an incomparable set going through an upgrading process
collectively generate at most two incomparable child points.

Theorem 1. After processing an anchor Au, if there is a point with cardinality
k which is the ancestor of a point with cardinality k + 5, then no point with
cardinality k will lead to an optimal solution. That is, the difference in cardinality
of incomparable points is at most four.

By Theorem 1, in computing S[i, j] for 1 ≤ i ≤ j ≤ n, it is sufficient to maintain
at most five consecutive sets of incomparable realizations S[k, ∗], S[k + 1, ∗],
S[k + 2, ∗], S[k + 3, ∗] and S[k + 4, ∗]. We have the following based on the above
two results.
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Theorem 2. The number of points in an incomparable set is bounded by O(Δ),
where Δ is the maximum number of labels whose intersection is nonempty.

Lemma 7. The following operations each take O(log Δ) time.

(1) Classifying points into the upgrading and non-upgrading classes.
(2) Finding two incomparable points among all upgraded points.
(3) The comparison between upgraded points and O(Δ) incomparable points.

Theorem 3. The time complexity of Algorithm 1M4P is O(n log Δ).

When the algorithm terminates, any point in nonempty S[i, n] with the largest i
is an optimal solution (of maximum cardinality i). The actual placement of labels
can be obtained if we record the processing history when a point is upgraded.

4 Fixed-Height Rectangle Label Placement in the Plane

First, we point out an implicit difference between point labeling problem and
label placement problem. As point labeling problem was considered, where a
constant number of label positions is allowed for each anchor, all label positions of
each anchor were regarded as pairwise intersecting and the reduction from point
labeling problem to label placement problem seemed intuitive[1,19]. However, for
common 4P model, if there are more than one anchor lying on some horizontal
line (or vertical line) with nonempty label intersection, we have the following
implicit difference. Figure 2 shows that for anchor Ai, the selection of label at
position 1 will affect the selection of the label at position 3 for anchor Aj . They
could be regarded as intersecting, but in fact they are not. This problem can be
resolved by set manipulation instead. Let a selection set of each anchor consist of
all its label positions. We then allow at most one label position of each selection
set be included in the solution. This doesn’t affect the asymptotic running time
but increase the implementation complexity.

ε ε

ε

Ai Aj

ε

Fig. 2. An example shows an implicit difference between point labeling problem and
label placement problem

For the fixed-height label placement model in the plane, Agarwal et al.[1]
provided a (1+1/k)-factor PTAS algorithm running in O(n log n+n2k−1) time,
and later Chan[3] improved it and presented a (1 + 1/k)-factor PTAS algorithm
running in O(n log n+nΔk−1) time, for an integer k ≥ 1. They both use the line
stabbing technique and the shifting idea of Hochbaum and Maass[10]. Assume all
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the fixed-height rectangles are stabbed by m horizontal lines and each rectangle
is stabbed by one line exactly, and let Ci, 0 ≤ i ≤ k, be the sub-collection of
all rectangles which are not stabbed by any horizontal line y = yl with l ≡ i
mod (k + 1). Then Ci is a union of groups of rectangles, where each group can
be stabbed by k horizontal lines and no two rectangles from different groups
intersect. If we can solve the fixed-height label placement model for each group
of n′ rectangles for a given integer k ≥ 1 in O(t(k, n′)) time, then we take
the union of all groups to obtain a solution of Ci, ∀i, and select one of the
solutions, O′, of maximum cardinality. The total time complexity is bounded by
O(t(k, n)) time and it is trivial to show that k|O∗| ≤ (k +1)|O′|, where O∗ is an
optimal solution[3]. Hence we consider the fixed-height label placement model
for n rectangles stabbed by k horizontal lines, for a given integer k ≥ 1, from now
on. Given a set of n fixed-height rectangles r1, r2, . . . , rn sorted by x-coordinates
of the left boundaries of all rectangles, stabbed by k horizontal lines L1, . . . , Lk,
the following property is immediate by the line stabbing technique.

Property 2. From left to right, as we process ri stabbed by Ll, ri intersects at
most two rectangles among r1, . . . , ri−1: rf , rg, or rg, rh, where rf , rg, and rh,
are last rectangles of r1, . . . , ri−1 on lines Ll−1, Ll, and Ll+1, respectively.

We associate a polygonal line consisting of 2k−1 orthogonal segments to specify
all the possible (2k−1)-dimensional realizations as used in Agarwal et al.[1]. How-
ever, based on the above property, we only need to consider the last rectangles on
lines Ll−1, Ll, and Ll+1 (i.e., three labels, and all the possible five-dimensional
realizations), as we process each rectangle ri, 1 ≤ i ≤ n, stabbed by line Ll, for
some l. In addition, we use the same dynamic programming method in Section 3
and extend our two-dimensional transformation for point labeling on a single line
to (2k−1)-dimensional transformation for this model as follows. We transform a
(2k − 1)-tuple representation (R.x1, R.x2, . . . , R.x2k−1) of the labeling state of a
realization R into a point P (x1, x2, . . . , x2k−1) in the (2k−1)-dimensional space.
Therefore, as we process each rectangle ri, 1 ≤ i ≤ n, stabbed by line Ll, for some
l, we only need to consider the five-dimensions (x2l−2, x2l−1, x2l, x2l+1, x2l+2) of
present incomparable points. The next lemma is an extension of Theorem 1.

Lemma 8. After processing a rectangle ri, if there is a point in (2k − 1)-
dimensional space with cardinality c which is the ancestor of a point with car-
dinality c + (4k + 1), then no point with cardinality c will lead to an optimal
solution. That is, the difference in cardinality of incomparable points is at most
4k. More precisely, after processing a rectangle ri, if there is an ancestor point
P with cardinality c upgraded by at least five rectangles stabbed by the same line,
then no point with cardinality c will lead to an optimal solution.

By Lemma 8, as we compute S[i, j] for 1 ≤ i ≤ j ≤ n, it is sufficient to maintain
at most min{4k + 1, n} consecutive sets of incomparable points S[c, ∗], S[c +
1, ∗], . . . , S[c + min{4k, n− 1}, ∗]. We further extend Theorem 2 to the following
lemma.
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Lemma 9. The number of points in an incomparable set is bounded by O(Δk−1),
where Δ is the maximum number of rectangles whose intersection is nonempty.

We construct two three-dimensional range trees T1 and Tk, and k − 2 five-
dimensional range trees T2, . . . , Tk−1 to determine whether the placement of
next rectangle ri stabbed by line Lj is feasible or not, by a range query of Tj in
five-dimension (x2j−2, x2j−1, x2j , x2j+1, x2j+2). According to the above lemmas,
we extend Lemma 7 and Theorem 3 to obtain the result.

Theorem 4. Given an integer k ≥ 1, the label placement problem of n fixed-
height rectangles stabbed by k horizontal lines can be solved in O(n log n+kn log4

Δ + Δk−1) time and O(kΔ3 log4 Δ + kΔk−1) space.

5 Concluding Remarks

We have extended the decision version of the map labeling problem on a hori-
zontal line to an optimization version where the number of feasible labels is to
be maximized. It is a variation of maximum independent set problem on inter-
val graphs. Improving the previous related results, we have presented a faster
O(n log Δ) time algorithm for the Max-1d4P model by dynamic programming on
two parameters: the anchor ordering and the cardinality of possible solutions. In
addition, we have further extended our method to improve the previous results
for the fixed-height rectangle label placement model in the plane and presented
a (1 + 1/k)-factor PTAS algorithm that runs in O(n log n + kn log4 Δ + Δk−1)
time, using O(kΔ3 log4 Δ + kΔk−1) storage.

We conclude with two open questions concerning map label number maximiza-
tion model. First, whether there exist solutions for Max-Slope4P fixed-height(or
width) rectangle label model remains to be seen. Secondly, how to improve Al-
gorithm 1M4P to obtain a linear time algorithm solving the Max-1d4P model
given sorted anchors, and further extend it to reduce the time complexity of
PTAS for label placement problem in the plane is worthwhile.
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Abstract. We compute the exact fractional chromatic number for sev-
eral classes of monotone self-dual Boolean functions. We characterize
monotone self-dual Boolean functions in terms of the optimal value of a
LP relaxation of a suitable strengthening of the standard IP formulation
for the chromatic number. We also show that determining the self-duality
of monotone Boolean function is equivalent to determining feasibility of
a certain point in a polytope defined implicitly.

1 Introduction

A Boolean function, or a function in short, is a mapping f : {0, 1}n → {0, 1},
where x = (x1, . . . , xn) ∈ {0, 1}n is called a Boolean vector (a vector in short).
A Boolean function is said to be monotone if f(x) ≤ f(y) for all vectors x and
y with x ≤ y, where x ≤ y denotes xi ≤ yi for all i ∈ {1, . . . n}. It is known
that a Boolean function is monotone if and only if it can be represented by a
formula that contains no negative literal. Especially, any monotone function f
has a unique prime disjunctive normal form (DNF) expression

f =
∨

H∈H

( ∧

j∈H

xj

)
, (1)

where H is a Sperner (or simple) hypergraph on V (= {1, . . . , n}), i.e., H is a
subfamily of 2V that satisfies H �⊆ H ′ and H �⊇ H ′ for all H, H ′ ∈ H with
H �= H ′. It is well-known that H corresponds to the set of all prime implicants
of f . Given a function f , we define its dual fd : {0, 1}n → {0, 1} by fd(x) = f(x)
for all vectors x ∈ {0, 1}n, where x is the componentwise complement of x, i.e.,
x = (x1, . . . , xn). As is well-known, the formula defining fd is obtained from
that of f by exchanging ∨ and ∧ as well as the constants 0 and 1. A function f
is called self-dual if f = fd holds.

Monotone self-dual functions have been studied not only in Boolean algebra,
but also in hypergraph theory [2,20], distributed systems [13,16], and game the-
ory [29] under the names of strange hypergraphs, non-dominated coteries, and
decisive games, respectively. For example, a Sperner hypergraph H ⊆ 2V is called
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strange [20] (or critical non-2-colorable [1]) if it is intersecting (i.e., every pair
in H has at least one element from V in common) and not 2-colorable (i.e., the
chromatic number χ(H) of H satisfies χ(H) > 2). It is known (e.g., [2,8]) that a
monotone function f is self-dual if and only if it can be represented by (1) for
a strange hypergraph H. Here we note that there exists a one-to-one correspon-
dence between monotone self-dual functions and strange hypergraphs. Strange
hypergraphs can also be characterized in terms of transversals. For a hypergraph
H ⊆ 2V , T ⊆ V is a transversal of H if T ∩ H �= ∅ for all H ∈ H, and the family
of minimal transversals of H is called the transversal hypergraph of H, denoted
by Tr(H). Then H is strange if and only if Tr(H) = H holds (e.g., [1,2,8]).

Another characterization of self-duality (i..e, strangeness) appears in the lit-
erature of distributed systems [13,16]. A coterie is an intersecting Sperner hy-
pergraph. A coterie H is dominated by another coterie H′ if for each H ∈ H
there exists an H ′ ∈ H′ such that H ′ ⊆ H , and is non-dominated if no such
coterie H′ exists. It is known (e.g., [13]) that H is strange if and only if it is a
non-dominated coterie. In summery, the following equivalence is known.

Theorem 1 (E.g., [1,2,8,13,16]). Let H be a Sperner hypergraph, and f be a
monotone function defined by (1). Then the following statements are equivalent:

1. H is a non-dominated coterie.
2. f is self-dual.
3. H is strange (i.e., H is intersecting and χ(H) > 2).
4. Tr(H) = H.

Given a monotone function f represented by (1), the self-duality problem is to
determine whether fd = f . By Theorem 1, the self-duality problem is to decide if
a given hypergraph H satisfies Tr(H) = H, i.e., is strange (or a non-dominated
coterie). Since it is known [3,8] that the self-duality problem is polynomially
equivalent to the monotone duality problem, i.e., given two monotone DNFs
ϕ and ψ, deciding if they are mutually dual (i.e., ϕd ≡ ψ), the self-duality
problem has a host of applications in various areas such as database theory,
machine learning, data mining, game theory, artificial intelligence, mathematical
programming, and distributed systems (See surveys [11,9] for example).

While the self-duality problem is in co-NP, since for a non-self-dual function
f , there exists a succinct certificate x ∈ {0, 1}n such that f(x) �= fd(x) (i.e.,
f(x) = f(x)), the exact complexity of the self-duality is still open for more
than 25 years now (e.g., [11,19,17,26]). The best currently known upper time-
bound is quasi-polynomial time [12,14,31]. It is also known that the self-duality
problem can be solved in polynomial time by using poly-logarithmically many
nondeterministic steps [10,18]. These suggest that the self-duality problem is
unlikely to be co-NP-complete, since it is widely believed that no co-NP-hard
problem can be solved in quasi-polynomial time (without nondeterministic step)
and in polynomial time with poly-logarithmically many nondeterministic steps.
However the problem does not seem to lend itself to a polynomial time algorithm.

Much progress has been made in identifying special classes of monotone
functions for which the self-duality problem can be solved in polynomial time

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



150 D.R. Gaur and K. Makino

(e.g., [4,6,7,8,10,15,19,21,22,23,27] and references therein). For example, Peled
and Simeone [27] and Crama [6] presented polynomial time algorithms to du-
alize (and hence to determine the self-duality of) regular functions in polyno-
mial time. Boros et al. [5] and Eiter and Gottlob [8] showed the self-duality
for monotone k-DNFs (i.e, DNFs in which each term contains at most k vari-
ables) can be determined in polynomial time, and Gaur and Krishnamurti [15]
improved upon it to have a polynomial-time algorithm for the self-duality for
monotone O(

√
log n)-DNFs.

Our contributions. Motivated by Theorem 1 (that f is self-dual if and only if
H is strange), we study the fractional chromatic number [30] of self-dual func-
tions. We exactly characterize the fractional chromatic number of three classes of
self-dual functions that arise in the context of distributed systems, namely, the
functions associated with majority coteries [13], wheel coteries [24], and uniform
Lovász coteries [25]. We also show that any threshold self-dual function has the
fractional chromatic number greater than 2.

Since the fractional chromatic number of self-dual functions associated with
uniform Lovász coteries is less than 2, it cannot be used to characterize self-
dual functions, where we note that dual-minor (that corresponds to intersecting
hypergraphs) and non-self-dual functions has chromatic number 2, and hence
fractional chromatic number at most 2. Thus, by strengthening the standard
integer programming formulation for chromatic number, we give another char-
acterization of self-dual functions in terms of the optimal solution to an LP
relaxation of the strengthening. This characterization also shows that the self-
duality is equivalent to determining the feasibility of ‘some’ point in a suitably
defined polytope.

2 Preliminaries

Let H be a hypergraph on vertex set V . A k-coloring of H is a partition
{V1, . . . , Vk} of V (i.e., V =

⋃k
i=1 Vi and Vi ∩ Vj = ∅ for all i and j with

i �= j) such that every edge H ∈ H intersects at least two subsets Vi and Vj .
Here the vertices that belong to Vi are assigned the color i. For a hypergraph,
we denote by χ(H) the smallest integer k for which H admits a k-coloring. We
define χ(H) = +∞ if H contains a hyperedge H of size 1 (i.e., |H | = 1). A ver-
tex subset W ⊆ V is called independent if it does not contain any edge H ∈ H;
otherwise, dependent. Let I denote the family of all the (inclusionwise) maxi-
mal independent sets of H. Then the following integer programming problem
determines the chromatic number χ(H) of H.

IP: minimize
∑

I∈I
xI

subject to
∑

I:I�v

xI ≥ 1 for all v ∈ V (2)

xI ∈ {0, 1} for all I ∈ I, (3)
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where xI takes 0/1 value (from constraint (3)) associated with maximal inde-
pendent set I ∈ I, constraint (2) ensures that each vertex is covered by some
maximal independent set and the goal is to minimize the number of maximal
independent sets needed. We note that χ(H) is the optimal value, since a χ(H)-
coloring can be constructed from a subfamily I∗ = {I ∈ I | xI = 1}.

Linear programming (LP) relaxation of the problem above is obtained by
replacing (3) with non-negativity constraints:

xI ≥ 0 for all I ∈ I. (4)

The optimal value of the LP relaxation, denoted χf (H), is the fractional chro-
matic number (see [30]). By definition, we have χf (H) ≤ χ(H). Let us describe
the dual (D) of the LP relaxation, where yv denotes a variable associated with
v ∈ V .

D: maximize
∑

v∈V

yv

subject to
∑

v∈I

yv ≤ 1 for all I ∈ I (5)

yv ≥ 0 for all v ∈ V

The subsequent sections make use of the strong and the weak duality in linear
programming extensively. Weak duality states that the value of a feasible dual
solution is a lower bound on the optimal value of the primal, where the primal is
a minimization problem. Strong duality states that the feasibility of the primal
and the dual problems implies that two problems have the same optimal values.
For details see Chapter 5 in [32], for example.

In general the number of maximal independent sets of a hypergraph H can
be exponential in |V | and |H|, but by Theorem 1, we have the following nice
characterization of maximal independent sets for strange hypergraphs, since I is
a maximal independent set if and only if I (= V \ I) is a minimal transversal.

Lemma 1. A hypergraph H is strange if and only if I = {H | H ∈ H} holds.

This implies that the number of variables in the primal problem (the number of
constraints (5) in the dual problem) is |H|.

3 Fractional Chromatic Number of Strange Hypergraphs

In this section, we study the fractional chromatic number for well known classes
of self-dual functions that have received considerable attention in the area of
distributed systems.

3.1 Strange Hypergraphs H with χf(H) > 2

We show that the majority, wheel, and threshold hypergraph have fractional
chromatic number greater than 2.
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Let us first consider the majority hypergraphs. For a positive integer k, let
M2k+1 be a majority hypergraph on V with |V | = 2k + 1 defined by

M2k+1 = {M ⊆ V | |M | = k + 1}.

It is easy to see that Tr(M2k+1) = M2k+1 holds (i.e., M2k+1 is strange).

Theorem 2. For a positive integer k, we have χf (M2k+1) = 2 + 1
k
.

Proof. It follows from Lemma 1 that we have
(2k+1

k+1

)
maximal independent sets

I, each of which satisfies |I| = k. We can see that each vertex v in V belongs to( 2k
k−1

)
maximal independent sets. We construct feasible primal and dual solutions

with value 2 + 1
k

to complete the proof.

For the primal problem, we assign 1/
( 2k
k−1

)
to each maximal independent set.

Then we note that this is a feasible solution, and the value is
(2k+1

k+1

)
/
( 2k
k−1

)
=

2 + 1
k

. On the other hand, for the dual problem, we assign 1/k to each vertex in
V . This is again a feasible dual solution, and the value is 2 + 1/k. ��
Let us next consider wheel hypergraphs. For a positive integer n (> 3), Wn be a
hypergraph on V = {1, . . . , n} defined by

Wn = {{i, n} | i = 1, . . . , n − 1} ∪ {{1, . . . , n − 1}}.

Clearly, Wn is strange, since Tr(Wn) = Wn holds.

Theorem 3. For a positive integer n (> 3), we have χf (Wn) = 2 + 1
n − 2 .

Proof. We construct feasible primal and dual solutions with value 2 + 1/(n − 2)
to complete the proof.

For the primal problem, we assign 1 to maximal independent set {n} and
1/(n − 2) to all the other maximal independent sets. Then we can see that this
is feasible whose value is 2+1/(n − 2). On the other hand, for the dual problem,
we assign 1/(n − 2) to yi, i = 1, . . . , n − 1, and 1 to yn. Then this is a feasible
dual solution with value 2 + 1/(n − 2). ��
A function f is called threshold if it can be represented by

f(x) =

{
1 if

∑
i wixi > 1

0 otherwise,
(6)

for some nonnegative weights w1, . . . , wn. We can see that functions fM2k+1 and
fWn associated with M2k+1 and Wn are threshold, since they can be represented
by the following inequalities.

fM2k+1(x) =

{
1 if

∑2k+1
i=1

1
k

xi > 1
0 otherwise

and fWn(x)=

{
1 if

∑n−1
i=1

1
n−2 xi + xn > 1

0 otherwise.

As seen in Theorems 2 and 3, we have χf (M2k+1), χf (Wn) > 2. The next
theorem says that thresholdness ensures that the fractional chromatic number
is greater than 2.
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Theorem 4. The fractional chromatic number of any threshold self-dual func-
tion is greater than 2.

Proof. Let f be a threshold self-dual function defined by (6), and let H be a
strange hypergraph corresponding to f . Let us consider the dual problem to have
a lower bound on the fractional chromatic number. We assign the weights wi in
(6) to dual variables yi. Then by (1), any independent set I satisfies

∑
i∈I wi ≤ 1,

and hence it is feasible. We assume without loss of generality that there exists a
vector x ∈ {0, 1}n such that

∑
i wixi = 1, i.e., a maximal independent set I∗ of H

such that
∑

i∈I∗ wi = 1. By Lemma 1, we have I∗∈ H and hence
∑

i∈I∗ wi > 1.
Thus the objective value of yi is

∑n
i=1 wi =

∑
i∈I∗ wi +

∑
i∈I∗ wi > 2. ��

3.2 Strange Hypergraphs H with χf(H) ≤ 2

This section shows that not every strange hypergraph has the fractional chro-
matic number greater than 2. Especially, we show that there exists an infinite
family of strange hypergraphs H with χf (H) < 2.

Let us first see that the following strange hypergraph H has χf (H) = 2.

Example 1. Let V = {a, b} ∪ {1, . . . , 7}, and H be a hypergraph on V given by

H =
{
{a, b}

}
∪

{
{1, 2, 3, c}, {3, 4, 5, c}, {1, 5, 6, c},

{1, 4, 7, c}, {2, 5, 7, c}, {3, 6, 7, c}, {2, 4, 6, c} | c ∈ {a, b}
}
.

Note that this H satisfies Tr(H) = H (i.e., H is strange), and hence we have
χ(H) = 3. For its fractional chromatic number, we have a feasible primal so-
lution with value 2 obtained by assigning 1

2 to four maximal independent sets
{1, 2, 6, 7, b}, {2, 3, 5, 6, b}, {4, 5, 6, 7, a}, and {1, 3, 4, 6, a}, and 0 to all the others.
A dual solution of value 2 is obtained by assigning 1 to xa and xb, and 0 to all
the others. Thus we have χf (H) = 2.

We next show that there exist a strange hypergraph H with χf (H) < 2.
A finite projective plane of order n is defined as a set of n2 + n + 1 points

with the properties that:

1. Any two points determine a line,
2. Any two lines determine a point,
3. Every point has n + 1 lines on it, and
4. Every line contains n + 1 points.

When n is a power of a prime, finite projective planes can be constructed as
follows, where the existence of finite projective planes when n is not a power of
a prime is an important open problem in combinatorics.

There are three types of points:

1. a single point p,
2. n points p(0), p(1), and p(n − 1),
3. n2 points p(i, j) for all i, j ∈ {0, . . . , n − 1}.
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The lines are of the following types:

1. one line {p, p(0), p(1), . . . , p(n − 1)},
2. n lines of the type {p, p(0, c), p(1, c), . . . , p(n − 1, c)} for all c’s,
3. n2 lines of the type {p(c), p(0×c+r (mod n), 0), p(1×c+r (mod n), 1), . . . ,

p((n − 1) × c + r (mod n), n − 1)} for all c’s and r’s.

For example, the finite projective plane of order 2, called Fano plane, has 7
points

p, p(0), p(1), p(0, 0), p(0, 1), p(1, 0), p(1, 1),

and 7 lines

{p, p(0), p(1)}, {p, p(0, 0), p(1, 0))}, {(p, p(0, 1), p(1, 1))}, {p(0), p(0, 0), p(0, 1)},

{(p(0), p(1, 0), p(1, 1)}, {p(1), p(0, 0), p(1, 1)}, {p(1), p(1, 0), p(0, 1)}.

It is known [2] that Fano plane is a strange hypergraph, if we regard points and
lines as vertices and hyperedges, respectively, but no finite projective plane of
order n (> 2) is strange.

Theorem 5. Let Fn be a finite projective plane of order n. Then we have
χf (Fn) ≤ 1 + n + 1

n2 if n ≥ 3, and χf (F2) = 7
4 .

Proof . Let us first show that χf (Fn) ≤ 1+(n+1)/n2 for n (≥ 2) by constructing
a prime feasible solution with value 1 + (n + 1)/n2. By the definition of finite
projective plane, F ∈ Fn is a minimal transversal of Fn, and hence F is a
maximal independent set of Fn. By assigning 1/n2 to each maximal independent
set F with F ∈ Fn, and 0 to each maximal independent set I with I �∈ Fn, we
have a feasible primal solution with value 1 + (n + 1)/n2.

We next prove χf (F2) = 7
4 by constructing a dual feasible solutions with value

7/4. Since F2 is strange, Lemma 1 implies that F2 has 7 maximal independent
sets, each of which has size 4. Thus by assigning 1/4 to each vertex, we have a
feasible solution with value 7/4, which completes the proof.

We now describe an infinite family of strange hypergraphs (obtained from Crum-
bling Walls coteries) whose fractional chromatic number goes to 1 as n (= |V |)
does.

Crumbling walls due to Peleg and Wool [28] are coteries that generalize the
triangular coteries, grids, hollow grids, and wheel coteries. Let V = {1, 2, . . . , n},
and let U0, U1, . . . , Ud be a partition of V , where we denote |Ui| by ni. Then
crumbling wall H is defined by H =

⋃d
i=0 Hi such that

Hi =
{
Ui ∪ {ui+1, . . . , ud} | uj ∈ Uj for all j = i + 1, . . . , n

}
. (7)

Note that H ∩ H ′ �= ∅ holds for all H, H ′ ∈ H (i.e., H is a coterie). It is known
that a crumbling wall is strange if and only if n0 = 1 and ni ≥ 2 for all i ≥ 1
[28]. Crumbling walls with n0 = 1 are also known as Lovász hypergraphs (or
coteries), as the construction was first proposed by Lovász [20].
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We consider the class of uniform Lovász hypergraphs, denoted by Lk,d, which
are crumbling walls with n0 = 1 and ni = k (≥ 2) for all i = 1, . . . , d. For
example, if k, d = 2, then we have

L2,2 =
{
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {4, 5}

}
,

where U0 = {1}, U1 = {2, 3}, and U2 = {4, 5}.

Theorem 6. Let k and d be positive integers with k ≥ 2. Then we have

χf (Lk,d) = 1 +
kd

d∑

i=1

(k − 1)ikd−i

, (8)

which satisfies χf (Lk,d) → +1 as k, d → +∞. ��

On the positive note, we show that at least half of strange hypergraphs have
fractional chromatic number at least 2.

Lemma 2. Let H be an intersecting hypergraph having an hyperedge with exactly
k elements. Then we have χf (H) ≥ k

k − 1 .

Proof . Since the value of a feasible dual solution is a lower bound on χf (H), we
construct a dual feasible solution with value k

k − 1. Let H be a hyperedge of size

k. Assign 1
k − 1 to variables yj with j ∈ H , and 0 to yj with j �∈ H . Suppose

that the solution is not feasible. Then for some maximal independent set I, we
have

∑
j∈I yj > 1, which implies that H is contained in the independent set I.

This contradicts that I is independent. ��

It follows from the lemma that all the intersecting hypergraph with a hyperedge
of size 2 has fractional chromatic number at least 2.

Let H be a hypergraph on V , and let a and b are new vertices, i.e., a, b �∈ V .
Define Ha,b by

Ha,b =
{
{a, b}

}
∪

{
H ∪ {c} | H ∈ H, c ∈ {a, b}

}
.

It is easy to see that the strangeness of H implies that of Ha,b. We say that
two hypergraphs are different, if they are not identical up to isomorphism (i.e.,
renaming of the vertices).

Theorem 7. At least half of strange hypergraphs have fractional chromatic
number at least 2.

Proof . Let S be the family of all strange hypergraphs (unique up to isomor-
phism). Let S3 ⊆ S be the family of strange hypergraphs such that all the
hyperedges contain at least 3 vertices, and let S2 = S\S3. Then for each H ∈ S3,
we have Ha,b ∈ S2, and Ha,b is different from H′a,b if H and H′ are different.
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Therefore, |S2| ≥ |S3| holds. By Lemma 2, every H ∈ S2 has χf (H) ≥ 2. This
completes the proof. ��
Remark. Let H be an intersecting Sperner hypergraph with a hyperedge of size
2. If H is not strange, then χ(H) = 2 holds by Theorem 1, and hence χf (H) ≤ 2.
By this, together with Lemma 2, we have χf (H) = 2, which implies that there ex-
ists an infinite family of non-strange hypergraphs H with χf (H) = 2. Moreover,
by Theorem 6, we know the existence of an infinite family of strange hypergraphs
H with χf (H) < 2. These imply that the fractional chromatic number cannot be
used to separate strange hypergraphs from non-strange hypergraph. Hence, we
need to strengthen the integer program by adding additional inequalities, which
is discussed in the next section.

4 A LP Characterization of Strange Hypergraphs

In this section, we show how to strengthen the LP-relaxation using derived con-
straints. The strengthened relaxation (which contains the derived constraints)
has optimal value χ∗f (H) > 2, provided that H is strange. Let us consider the fol-
lowing integer program SIP for the chromatic number. The linear programming
relaxation to SIP is denoted by SLP.

SIP: minimize
∑

I∈I
xI

subject to
∑

I:I�v

xI ≥ 1 for all v ∈ V (9)

∑

I:I∩H �=∅
xI ≥ 2 for all H ∈ H (10)

xI ∈ {0, 1} for all I ∈ I, (11)

Lemma 3. x is a feasible solution of SIP if and only it is a feasible solution of
IP.

Proof . We show the lemma by proving that constraint (10) is implied by con-
straints (9) and (11).

Let H be a hyperedge of H. Then from (9), the following inequality holds:
∑

v∈H

∑

I:I�v

xI ≥
∑

v∈H

1 (= |H |). (12)

We note that the coefficient αI of variable xI in inequality (12) satisfies the
following properties

1. αI = 0, if I ∩ H = ∅,
2. αI < |H | − 1, if I ∩ H �= ∅.

Since each variable xi takes only 0/1, we can replace the previous constraint by
(10). ��
Here we prove analogue of Theorem 1.
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Theorem 8. Let H be an intersecting Sperner hypergraph. Then H is strange
if and only if χ∗f (H) > 2.

Proof . (⇒) We construct a dual solution to have a lower bound on the optimal
value of the primal problem. Let us assign 1/(|H|−1) to dual variables associated
with (10), and 0 to dual variables associated with (9). By lemma 1, I ∈ I if
and only if I ∈ H. This implies that for each I ∈ I, there exists a hyperedge
H ∈ H such that I ∩ H = ∅, where such a hyperedge is I. Thus the assignment
above constructs a feasible solution with value 2(1 + 1/(|E| − 1)), which implies
χ∗f (H) > 2.

(⇐) If χ∗f (H) > 2, then we have 2 < χ∗f (H) ≤ χ∗(H) = χ(H) by Lemma 3,
where χ∗(H) denotes the optimal value of SIP. It follows from Theorem 1 that
H is strange. ��
Remark. The implicitly defined LP relaxation of SIP can be solved in polyno-
mial time, provided that there exists a separation oracle for the LP relaxation.
This would imply a polynomial time algorithm for the self-duality problem. How-
ever, the arguments used in the proof of Theorem 8 can be used to show that
determining the feasibility of a point in the polytope associated with SLP is
equivalent to the self-duality problem.

Let P be a polytope defined by the dual of the LP relaxation of SIP. Let y be dual
variables associated with constraint (9), and let z be dual variables associated
with constraint (10). Let (y∗, z∗) be a vector obtained by assigning 0 to each yi,
and 1

|H| − 1 to each zi.

Theorem 9. Let H be an intersecting Sperner hypergraph. Then (y∗, z∗) ∈ P if
and only if H is strange.

Proof. (⇐) Suppose that H is strange. Then by the proof (of forward direction)
of Theorem 8, (y∗, z∗) is a feasible solution to the dual of SLP and hence it is
contained in P .

(⇒) Suppose that H is not strange. Then by Lemma 1, there exists a maximal
independent set I such that I �= H for all H ∈ H. Since H is intersecting, each
H with H ∈ H is independent. Thus such an I satisfies I �⊆ H (i.e., I ∩ H �= ∅)
for all H ∈ H. This implies that, if we consider assignment (y∗, z∗) to the dual

variables, the dual constraint associated with I is not satisfied, since |H|
|H| − 1 > 1.

which implies (y∗, z∗) �∈ P . ��

5 Conclusion

In this paper, we have characterized self-dual functions in terms of optimal value
of a certain linear programming problem. The linear programming problem is
a relaxation of a strengthened version of the standard IP formulation for the
chromatic number and its dual is defined implicitly with exponentially many
constraints. The linear programming problem could in principle be solved in
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polynomial time, if there exists a separation oracle. However, we have also shown
that the problem for determining feasibility of a given point in the associated
polytope is equivalent to the self-duality problem. We have computed the exact
fractional chromatic number for well-known classes of self-dual functions arising
from majority coteries, wheel coteries, and uniform Lovász coteries. The exis-
tence of a polynomial time algorithm for determining self-duality of monotone
Boolean functions remains open.
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Abstract. We study approximation streaming algorithms for the k-
center problem in the fixed dimensional Euclidean space. Given an in-
teger k ≥ 1 and a set S of n points in the d-dimensional Euclidean
space, the k-center problem is to cover those points in S with k con-
gruent balls with the smallest possible radius. For any ε > 0, we devise
an O( k

εd )-space (1 + ε)-approximation streaming algorithm for the k-
center problem, and prove that the updating time of the algorithm is

O( k
εd log k) + 2

O( k1−1/d

εd
)
. On the other hand, we prove that any (1 + ε)-

approximation streaming algorithm for the k-center problem must use
Ω( k

ε(d−1)/2 )-bits memory. Our approximation streaming algorithm is ob-
tained by first designing an off-line (1+ ε)-approximation algorithm with

O(n log k) + 2
O( k1−1/d

εd
)

time complexity, and then applying this off-line
algorithm repeatedly to a sketch of the input data stream. If ε is fixed,
our off-line algorithm improves the best-known off-line approximation al-
gorithm for the k-center problem by Agarwal and Procopiuc [1] that has

O(n log k) + ( k
ε
)O(k1−1/d) time complexity. Our approximate streaming

algorithm for the k-center problem is different from another streaming
algorithm by Har-Peled [16], which maintains a core set of size O( k

εd ),
but does not provide approximate solution for small ε > 0.

1 Introduction

In recent years, a new class of data-intensive applications that require manag-
ing data streams (e.g. [6]) has become widely recognized. Streaming algorithms
have applications in data management, network monitoring, stock market, sensor
networks, astronomy, telecommunications and others. Processing data streams is
typically performed via a single pass over the stream. In the streaming model of
computation, the input data items can only be accessed in the order they arrive.
A streaming algorithm cannot save the input data stream, but only has a rough
sketch (or a summary) of the input data stream. So, a streaming algorithm
� This research is supported by Louisiana Board of Regents fund under contract num-
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performs sub-linear space computation. Due to such sub-linear space limited
computation, the design of streaming algorithms poses unique challenges.

In this paper, we study approximation streaming algorithms for the k-center
problem, a well-studied clustering problem in data management, in the fixed di-
mensional Euclidean space. Given an integer k ≥ 1 and a set S of n points in the
d-dimensional Euclidean space �d, the k-center problem is to cover these n points
in S with k congruent balls of the smallest possible radius. For any ε > 0, we de-
velop an O( k

εd )-space (1+ε)-approximation streaming algorithm for the k-center

problem in �d. The algorithm has updating time O( k
εd log k) + 2O( k1−1/d

εd ). On
the other hand, we prove that any (1 + ε)-approximation streaming algorithm
for the k-center problem must use Ω( k

ε(d−1)/2 )-bits of memory. Our approxi-
mation streaming algorithm is obtained by first designing an off-line (1 + ε)-

approximation algorithm with O(n log k)+2O(k1−1/d

εd ) time complexity, and then
applying this off-line algorithm repeatedly to a sketch of the input data stream.
Interestingly, if ε is fixed, our off-line algorithm improves the best-known off-line
approximation algorithm for the k-center problem by Agarwal and Procopiuc [1]
that has O(n log k) + (k

ε )O(k1−1/d) time complexity.

1.1 Related Works

Early research on streaming algorithms dealt with simple statistics of the input
data streams, such as the median [18], the number of distinct elements [10], or fre-
quency moments [2]. Streaming algorithms with constant-factor approximation
for the k-mean clustering problem are reported in [19,15]. A constant-factor ap-
proximation streaming algorithm for the k-median problem was obtained in [4],
which requires space O(k(log n)O(1)). Constant-factor approximation streaming
algorithms for the k-center problem in the Euclidean space or metric space were
reported in [5,4]. A (1+ε)-approximation algorithm was presented in [3], which is
more suitable for higher dimensional space with a smaller k because its computa-
tional time is 2O((k log k)/ε2) ·dn. The streaming algorithm and its complexity for
computing the diameter of 2D geometric points are studied in [9]. The diameter
problem is similar to the 1-center problem.

The streaming algorithm for the k-center problem was also studied by Har-
Peled [16]. He showed that a set of core points of size O( k

εd ) can be maintained
with updating time O(nk/εd). The approximate solution for the core set is also
an approximate solution for the original problem, but he did not provide an
approximation scheme for the k-center problem with ratio (1+ε) for small ε > 0.
This paper gives the approximation streaming algorithm for any fixed ε > 0.

2 Notations

A data stream is an ordered sequence of data items (or points) p1, p2, · · · , pn.
Here, n denotes the number of data points in the stream. A streaming algorithm
is an algorithm that computes some function over a data stream and has the
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following properties: 1. The input data are accessed in the sequential order of
the data stream. 2. The order of the data points in the stream is not controlled
by the algorithm.

Given an integer k ≥ 1 and a set S of n points in the d-dimensional Euclidean
space �d, the k-center problem is to find the minimum radius r, denoted by
opt(S), so that those n points in S can be covered by k congruent balls of
radius r. When approximation to the k-center problem is concerned with, any
approximation to opt(S), denoted by app(S), should satisfy app(S) ≥ opt(S).
The approximation ratio is defined to be max app(S)

opt(S) .
For a data stream S = p1, p2, · · · , pn, when no confusing arises, we also use

S to refer the set {p1, p2, . . . , pn}. When a new data point pn+1 arrives at the
stream, we let S ◦ pn+1 denote the stream p1, p2, · · · , pn, pn+1.

Let o = (a1, · · · , ad) be a point in �d and r > 0. Define Sd(r, o) to be the sphere
centered at o with radius r in �d. Namely, Sd(r, o) = {(x1, · · · , xd)|(x1 − a1)2 +
· · · + (xd − ad)2 = r2}. Define Bd(o, r) to be the ball centered at o with radius
r in �d. Similarly, Bd(o, r) = {(x1, · · · , xd)|(x1 − a1)2 + · · · + (xd − ad)2 ≤ r2}.
For a real number x, �x� is the largest integer y ≤ x and �x	 is the least integer
z ≥ x. Throughout this paper, the dimension number d is fixed.

3 A Space Upper Bound for the k-Center Problem

In this section, we will devise an approximation streaming algorithm for the k-
center problem and analyze its space complexity and updating time complexity.

We will use geometric separators to design a divide and conquer algorithm
for the off-line k-center problem. We find that two types of geometric separators
can be applied to this problem.
Miller et al.’s Separator. A d-dimensional neighborhood system Φ =
{ B1, · · · , Bn} is a finite collection of balls in �d. For each point p ∈ �d, let
ply of p, denoted by plyΦ(p), be the number of balls from Φ that contains p. Φ is
a k-ply neighborhood system if for all p, plyΦ(p) ≤ k. Each (d − 1)-dimensional
sphere S in �d partitions Φ into three subsets: ΦI(S), ΦE(S) and ΦO(S), those
are the balls that are in the interior of S, in the exterior of S, or intersect S,
respectively.

Given a function f(n) ≥ 0 and a constant δ > 0, a (d− 1)-dimensional sphere
S in �d is an f(n)-sphere separator that δ-splits a neighborhood system Φ with
n balls in �d, if |ΦO(S)| ≤ f(n) and |ΦI(S)|, |ΦE(S)| ≤ δn.

Theorem 1 ([17,7]). Suppose Φ = {B1, · · · , Bn} is a k-ply neighborhood sys-
tem in �d. Then there is an O(n) time algorithm that finds an O(k1/dn1−1/d)-
sphere separator S that δ-splits the system for any (d + 1)/(d + 2) < δ < 1.

Fu’s Width-Bounded Separator. For two points p1, p2 in �d, dist(p1, p2)
denotes the Euclidean distance between p1 and p2. For a set A ⊆ �d, let
dist(p1, A) = minq∈A dist(p1, q).

A hyper-plane in �d through a fixed point p0 ∈ �d is defined by the equation
(p−p0) ·v = 0, where v is a normal vector of the plane and “.” is the usual vector

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On the Complexity of Approximation Streaming Algorithms 163

inner product (u·v =
∑d

i=1 uivi for u = (u1, · · · , ud) and v = (v1, · · · , vd)). Given
any Q ⊆ �d and any constant a > 0, an a-wide-separator is determined by a
hyper-plane L. This separator has two measurements to determine its quality of
separation: (1) balance(L, Q) = max(|Q1|,|Q2|)

|Q| , where Q1 = {q ∈ Q|(q−p0)·v < 0}
and Q2 = {q ∈ Q|(q − p0) · v > 0}, and we assume that L is through p0 with
a normal vector v; and (2) size(L, P, a

2 , w), which is the number of points in Q
with distance at most a

2 to the hyper-plane L.
It is easy to see from the definition that the first measurement determines the

balance quality of a separator. A well-balanced separator can reduce the problem
size efficiently to facilitate the application of a divide and conquer algorithm. The
other measurement determines the number of points that are either on or near
the separator hyper-plane. Those points form a boundary between two sides
of the hyper-plane, and shall be considered when combining solutions to the
sub-problems on two sides of the hyper-plane into a solution to the original
problem. Therefore, the fewer the number of those points, the more efficient it
is to combine solutions of sub-problems.

A point in �d is a grid point if all of its coordinates are integers. For a d-
dimensional point p = (i1, i2, · · · , id) and a > 0, define grida(p) to be the set
{(x1, x2, · · · , xd)|ij − a

2 ≤ xj < ij + a
2 , j = 1, 2, · · · , d}, which is a half open and

half close d-dimensional axis-parallel box with a volume of ad. In particular, when
a = 1, we let grid(p) to stand for grid1(p). For a1, · · · , ad > 0, a (a1, · · · , ad)-grid
point is a point (i1a1, · · · , idad) for some integers i1, · · · , id. For a set of points Q
in �d, GDa(Q) = {p|p is a (a, · · · , a)-grid point with q ∈ grida(p) for some q ∈
Q}.

Theorem 2 ([12]). Let w = O(1) be a positive real parameter and δ > 0 be a
small constant. Let P be a set of n grid points in �d. Then there is an O(nd+1)-
time and O(n)-space algorithm that finds a separator hyper-plane L such that
each side of L has ≤ d

d+1n points from P , and the number of points of P with

distance ≤ w to L is ≤ (cd + δ)w · n
d−1

d for all large n, where cd is a constant
for a fixed dimension d.

A sub-linear time randomized algorithm was presented in [13] for finding such
a separator as outlined in the above theorem. The deterministic O(nd+1)-time
algorithm of Theorem 2 is also sufficient for deriving the time bound in our
approximation streaming algorithm for the k-center problem.

A Separator for Our Algorithm. Using Theorem 1 or Theorem 2, we derive
a separator that will form the basis of the algorithm in section 3.1.

Lemma 1. Let r = O(1) be a positive real parameter and P be a set of n grid
points in �d. There is a surface L in �d such that, 1) L is either a hyper-plane
or a sphere; 2) L partitions �d into regions E and O; 3)|E∩P |, |O∩P | ≤ αn and
the number of points of P within distance at most r to L is at most βrn1−1/d;
and 4) L can be found in time O(nγ) and space O(n), where α, β, and γ are
positive constants for a fixed dimension d. Furthermore, α < 1.
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Proof. We prove this lemma by Theorem 1. Let P = {p1, · · · , pn} be the set of
points in �d. Let Φ = {B1, · · · , Bn} be the set of balls such that Bi has center
at pi and radius r for i = 1, · · · , n. For each point q in �d, there are at most
k = cdr

d grid points with distance at most r to q, where cd is a constant for
a fixed d. Therefore, Φ is a cdr

d-ply neighborhood system. By Theorem 1, we
can find a sphere L in O(n) time that satisfies |E ∩ P |, |O ∩ P | ≤ αn for some
α < d+1

d+2 + ε for any constant ε, and the number of points with distance at most
r to L is O(k1/dn1−1/d) = O(rn1−1/d) ≤ βrn1−1/d, where β can be chosen from
the definition of the Big-O notation. Since the computational time is O(n), the
space cost is O(n) and we also have γ = 1. �

Lemma 3 can also be proved by a direct application of Theorem 2. In this proof,
we have α < d

d+1 + δ, β ≤ cd + δ, and γ = d + 1, where δ is a small positive
constant.

The two different proofs of Lemma 3 show that we will get different constants
α, β and γ for the lemma. We expect all of them to be as small as possible.
The constant γ can be as small as 2

d if the sub-linear time randomized algorithm
of [13] is used. These three constants affect the analysis of the algorithms for the
k-center problem in the next two subsections. In the reminder of this paper, we
will refer to L as a 2r-wide separator for the grid point set P .

3.1 An Off-Line Approximation Algorithm

Motivated by Agarwal and Procopiuc [1], we use the algorithm by Feder and
Greene [8] to find a 2-approximation radius r to the optimal radius to cover
a given set of points with k balls. We try all radii ri = (1 + ε)i r

2 to r. One of
these radii is (1 + ε)-close to the optimal radius. We use a small number of grid
points to characterize the distribution of the input points. Covering those grid
points roughly means covering the input points. The grid size is dynamically
increased so that the approach does not lose much accuracy. We need a linear
space constant factor approximation algorithm for the k-center problem. For the
completeness, we follow the proof of [14,8] to prove Theorem 3 (see section 6 in
the Appendix). Using Theorem 3, we can achieve the same space upper bound for
the streaming algorithm. We can speed up the updating time via the algorithm
of Theorem 4, which has a more involved proof [8].

Theorem 3 ([14,8]). There is an O(n ·k) time and O(n) space algorithm such
that, given a set of n points in �d and integer k > 0, it outputs a radius r with
r∗ ≤ r ≤ 2r∗, where r∗ is the optimal radius for covering those points with k
balls.

Theorem 4 ([8]). There is an O(n log k) time and O(n) space algorithm such
that, given a set of n points in �d and integer k > 0, it outputs a radius r with
r∗ ≤ r ≤ 2r∗, where r∗ is the optimal radius for covering those points with k
balls.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On the Complexity of Approximation Streaming Algorithms 165

Lemma 2. Assume r > 0 and s > 0. There exists a 2O(rdm1− 1
d )-time and

O(rdm1− 1
d + m)-space algorithm such that, given a set of m (s, s, · · · , s)-grid

points Q in �d, it outputs a minimal number of balls of radius r · s with centers
all at (s, s, · · · , s)-grid points to cover all the points in Q.

Proof. Since the radius is propositional to the grid size, we assume s = 1 without
loss of generality. Our algorithm is a divide and conquer approach. Using a width-
bounded separator, the problem is decomposed into 3 parts. The separator region
has a width larger than the diameter of the covering balls, and it has a small
number of points in Q. The other two parts are on the two sides of the separator
region, and are separated by a distance larger than the diameter. Therefore,
points of Q in these two parts can be covered independently.

Algorithm Cover(Q, r)
Input: Q is a set of grid points in �d and r is the radius of balls to cover the

points in Q.
Output: the minimal number of balls of radius r that center at grid points

and cover all the points in Q.
If |Q| is small, use a brute force method to obtain and return the answer;
Let w = 2r and least = ∞.
Find a w-wide separator L with the algorithm of Lemma 1.
Let Q0 be the set of all the grid points in Q within distance r to L.
Let H be the set of all the grid points such that each point p ∈ H

has another point q ∈ Q0 with dist(p, q) ≤ r.
For each t ≤ |H |, select t grid points from H for the centers of t balls.

If those t balls cover all the points in Q0 then
Let Q1, Q2 ⊆ Q be the set of all the uncovered points on one

side of L with distance > r to L, respectively.
Let u = Cover(Q1, r) + Cover(Q2, r) + t.
If least > u then least = u.

Return least.
End of Algorithm

By Lemma 3, we can find a w-wide separator L such that each side of L has
≤ αm points from Q and the number of points of Q with distance ≤ w

2 = r

to L is bounded by βwm1− 1
d . The separator can be found in O(mγ) time. This

follows, given the definitions of Q0, H, Q1 and Q2 in the algorithm, that |H | =
O(rd|Q0|) = O(rdm1− 1

d ), |Q1| ≤ αm, and |Q2| ≤ αm. For each t ≤ |H |, the
algorithm selects t grid points from H as centers for t balls of radius r to cover
all the points in Q0. If all those points in Q0 are covered, the algorithm then
recursively calls Cover(Q1, r) and Cover(Q2, r) to cover the rest of the points
in Q1 ∪ Q2. Any set of grid point centered, congruent balls covering Q with
radius r shall be composed of three subsets of balls for covering Q0, Q1 and Q2,
respectively. Those balls covering Q0 shall have grid point centers from H , and
any ball covering Q1 does not overlap with any ball covering Q2, because the
separator has a width of 2r. Hence, the correctness of the algorithm is easy to
see.
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Let T (m) be the computational time. Since there are at most 2|H|=2O(rdm1− 1
d )

ways to select t ≤ |H | balls of radius r, we have T (m) ≤ 2O(rdm1− 1
d )T (αm) +

O(mγ). This implies that T (m) = 2O(rdm1− 1
d ) for a fixed d. Let S(m) be the

space. We have that S(m) = S(αm) + O(rdm1−1/d) + O(m), which implies that
S(m) = O(rdm1− 1

d + m). �

Theorem 5. For parameter 1 > ε > 0 and integer k > 0, there exists an

O(n log k + 2O( k
1− 1

d

εd )) time and O(n) space (1 + ε)-approximation algorithm for
the d-dimensional k-center problem for a set of n points P in �d.

Proof. We first use the algorithm of Theorem 4 to find the approximate radius
r0 such that r∗ ≤ r0 ≤ 2r∗, where r∗ = opt(P ). Let u = εr0

10
√

d
be the unit

length. We have r0 = 10
√

d
ε u. All the grid points mentioned in this proof are

(u, u, · · · , u)-grid points. We find a set of (u, u, · · · , u)-grid points Q that each
q in Q has grid(q) ∩ P �= ∅. Initially, Q = ∅. For each point p ∈ P , add all
the (u, u, · · · , u)-grid points q with p ∈ grid(q) to the set Q. At this time, we
complete the construction of Q and its size is O( k

εd ), because each ball of radius
r0 only has O( 1

εd ) (u, u, · · · , u)-grid points.
Next, we will try the radii r = r0

2 , (1+ ε
3 ) r0

2 , · · · , (1+ ε
3 )s r0

2 , where s is the least
integer with (1+ ε

3 )s > 4. Clearly, s = O(1
ε ). Since r∗ ≤ r0 ≤ 2r∗, there exists an

integer i ≤ s such that (1+ ε
3 )i−1 r0

2 ≤ r∗ ≤ (1+ ε
3 )i r0

2 . Let ri = (1+ ε
3 )i+1 r0

2 . Then
r∗(1+ ε

3 ) ≤ ri ≤ (1+ ε
3 )2r∗ ≤ (1+ε)r∗ (if the constant ε is selected small enough).

Let D1, · · · , Dk be the balls of the optimal radius r∗ to cover all the points in P .
The center of Di is at pi (i = 1, 2, · · · , k). Let qj be the (u, u, · · · , u)-grid point
with pj ∈ grid(qj) (j = 1, · · · , k). dist(qj , pj) ≤

√
du ≤ ε

6r0 ≤ ε
3r∗. Assume that

p is a point with dist(pj , p) ≤ r∗. Then dist(qj , p) ≤ dist(qj , pj) + dist(pj , p) ≤√
du + r∗ ≤ ε

3r∗ + r∗ ≤ (1 + ε
3 )r∗ ≤ ri ≤ (1 + ε)r∗. This means that all the

points covered by D1, · · · , Dk can be covered by the other k balls of radius ri

with centers at (u, u, · · · , u)-grid points.
We use the algorithm of Lemma 2 to check if all the points in P can be

covered by k balls of radius ri(i = 1, · · · , s). We select the least ri such that all
the points in P can be covered by k balls of radius ri. The computational time of

this part is at most s · 2O(( rs
u )dk1− 1

d ) = 2O( k
1− 1

d

εd ). This gives, with the additional
O(n log k) for finding r0 by Theorem 4, the desired time complexity of the whole
process. The algorithm of Theorem 4 has O(n) space cost, so is the algorithm of
Lemma 2. It is easy to see that we have O(n) space complexity. �

3.2 Converting the Off Line Algorithm into Streaming Algorithm

Using Theorem 5, we derive a streaming approximate algorithm for the k-center
problem.

Theorem 6. Let d be a fixed dimension. For any integer k > 0 and any real
parameter ε > 0, there exists a streaming algorithm such that given a stream
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of data points in �d, the algorithm returns (1 + ε)-approximation to the mini-
mum radius of k congruent balls to cover all of the data points. Moreover, the

algorithm’s updating time is O( k
εd log k) + 2O( k

1− 1
d

εd ) and its space complexity is
O( k

εd ).

4 Space Lower Bound for the k-Center Problem

In this section, we prove Ω
(

k
ε(d−1)/2

)
space lower bound for the streaming algo-

rithm for the k-center problem. The proof of our lower bound is self-contained.

Theorem 7. Every (1 + ε)-approximation streaming algorithm for the k-center
problem requires Ω

(
k

ε(d−1)/2

)
space.

Before presenting the proof, we briefly explain the method for deriving the lower
bound. In the d-dimensional space �d, we select k centers o1, o2, · · · , ok of k
congruent balls with radius r such that the distance between every two of these
ball is much larger than r. For each center point oi, we can arrange Ω( 1

ε(d−1)/2 )
points on the sphere Sd(oi, r) such that the distance between every two of these
points is at least εr. For k balls of radius r, there are all together Ω( k

ε(d−1)/2 )
such points on the spheres, and we let H be the set of all these points. For each
subset H1 = {p1, · · · , pm} ⊆ H , a stream of input points o1, o2, · · · , ok, p1, · · · , pm

is derived. Thus we get 2|H| = 2Ω( k

ε(d−1)/2 ) different streams of input points. If
A is a (1 + ε)-approximation stream algorithm that only uses o( k

ε(d−1)/2 ) bits
of memory, there will be two different streams derived respectively from two
different subsets H1, H2 of H such that A has the same space configuration after
running on the two input streams. Let p ∈ H1 and p �∈ H2. Assume p is on the
sphere of the ball Sd(oi, r). We can select a point p∗ on the line through p and
oi such that, adding p∗ towards the end of the streams derived from H1 and H2
will cause the algorithm to produce two different approximation solutions for the
two new input streams. Precisely, the two approximation solutions differ by a
factor larger than (1+ ε). On the other hand, the algorithm A shall produce the
same approximation solution for the two new input streams, because it has the
same memory configuration before p∗ arrives. The above contradiction implies
that any (1 + ε)-approximation streaming algorithm for the k-center problem
needs Ω

(
k

ε(d−1)/2

)
bits of memory.

Definition 1. Let P be a set of points in �d. Define miniBall(P ) as the least
radius of a ball that can cover all the points in P .

Lemma 3. Let P be a set of points on the Sd(o, r). Assume that for every
two points p1, p2 ∈ P , the angle � p1op2 is at least θ. Let P1 and P2 be dif-
ferent subsets of P . For every R > r, there exists a point p∗ ∈ �d such that
miniBall(P1∪{o, p∗}) = R+r

2 and miniBall(P1∪{o, p∗})−miniBall(P2∪{o, p∗}) ≥
(1−cos θ)r(R−r)

2(r cos θ+R) . In particular, if R = 2r, then miniBall(P1 ∪ {o, p∗}) − miniBall

(P2 ∪ {o, p∗}) ≥ 2 sin2 θ
2

9 · miniBall(P1 ∪ {o, p∗}).
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op

p′

o1 qp

θ

p1

p∗

Fig. 1. r = dist(p, o) = dist(p1, o) = dist(p′, o), R = dist(o, p∗), x = dist(o, qp)

Proof. Since P1 �= P2, we assume that p ∈ P1 and p �∈ P2. Let p1 be a point
on Sd(o, r) such that the � pop1 = θ (see Figure 1). Let p∗ be a point on the
line through p and o such that dist(p∗, o) = R and dist(p∗, p) = R + r. We look
for a point qp on the line po such that o is between p and qp, and dist(p1, qp) =
dist(p∗, qp). Let z = dist(qp, p1) and x = dist(o, qp). We have z2 = x2 + r2 +
2xr cos θ. On the other hand, we also let z2 = (R−x)2. From the two equations,
we have x = R2−r2

2(r cos θ+R) .
Let o1 be the median between p and p∗. For every point p2 in Sd(o, r),

dist(p2, o1) ≤ dist(p2, o) + dist(o, o1) = r + dist(o, o1) = R+r
2 . Recall that

dist(p, o1) = dist(o1, p
∗) = R+r

2 . Therefore, miniBall(P1 ∪ {o, p∗}) = R+r
2 .

For every point p′ ∈ P2, consider the triangle �p′oqp. We have dist(p′, qp)2 =
r2 + x2 + 2rx cos θ′, where θ′ is angle � p′op (� p′oqp + θ′ = π). Since θ′ is at
least θ, dist(p′, qp)2 ≤ r2 + x2 + 2rx cos θ = dist(p1, qp)2 = (R − x)2. Hence,
dist(p′, qp) ≤ R − x, this implies that miniBall(P2 ∪ {o, p∗}) ≤ R − x.

Now we have that miniBall(P1 ∪ {o, p∗}) − miniBall(P2 ∪ {o, p∗}) ≥ (r+R)
2 −

(R − x) = r−R
2 + x = r−R

2 + R2−r2

2(r cos θ+R) = (r−R)(r cos θ+R)+(R2−r2)
2(r cos θ+R) =

r2 cos θ+Rr−Rr cos θ−r2

2(r cos θ+R) = (1−cos θ)Rr−(1−cos θ)r2

2(r cos θ+R) = (1−cos θ)r(R−r)
2(r cos θ+R) . If R = 2r,

then miniBall(P1 ∪ {o, p∗}) = R+r
2 = 3r

2 . Furthermore, miniBall(P1 ∪ {o, p∗}) −
miniBall(P2 ∪ {o, p∗}) ≥ (1−cos θ)r(R−r)

2(r cos θ+R) = 2r2 sin2 θ
2

2(r cos θ+2r) ≥ 2r2 sin2 θ
2

6r = 2 sin2 θ
2

9 ·
miniBall(P1 ∪ {o, p∗}). �

Lemma 4. Let d ≥ 2. Let r and δ be positive real numbers. There is a set
of points Ad on the sphere Sd(o, r) such that Ad contains cd( rd−1

δd−1 ) points and
the distance between every two points in Ad is at least δ, where cd is a positive
constant for fixed d.

Proof. Without loss of generality, we assume that o is the origin point. The
lemma is true for the case d = 2. Assume that for each d′ < d, there exists Ad′

on Sd′(o′, r′) with at least cd′( r′d′−1

δd′−1 ) points and every two points in Ad′ have a
distance at least δ, where cd′ is a positive constant for fixed d′. The sphere Sd(o, r)
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has equation x2
1 + x2

2 + · · · + xd = r2. Let hi = r
10 + iδ, where i = 0, 1, · · · ,

⌊ 8r
10δ

⌋
.

Let Li be the sphere {(x1, · · · , xd−1, hi)|x2
1 + · · · + x2

d−1 = r2 − h2
i }, which is

the intersection of the hyper-plane xd = hi and Sd(o, r). The radius of Li is

ri =
√

r2 − h2
i ≥ r

10 . By the induction hypothesis, one can arrange ≥ cd−1 · rd−2
i

δd−2

points on Li with a pair-wise distance at least δ.
Since the distance between the hyper-planes xd = hi and xd = hj (i �= j)

is at least δ, every two points with one from Li and the other from Lj have
a distance at least δ. The set {0, 1, · · · ,

⌊ 8r
10δ

⌋
}, the range of i for hi, has at

least
⌈ 8r

10δ

⌉
≥ 8r

10δ elements. Therefore, the total number of points on Sd(o, r) is

≥
∑

i∈{0,1,···,� 8r
10δ �} cd−1

rd−2
i

δd−2 ≥ 8r
10δ

cd−1( r
10 )d−2

δd−2 = 8cd−1
10d−1

rd−1

δd−1 . The part 8cd−1
10d−1 is a

constant for fixed dimension d. �

Proof (for Theorem 7). Let r be a positive constant, which will be used as the
radius for k spheres in the input set construction. Let δ =

√
18εr. We select k

centers o1, · · · , ok in �d such that oi = (20 · i · r, 0, · · · , 0). The distance between
different oi and oj is at least 20r. For each center oi we select a set of points on
the sphere Sd(oi, r) such that the pair-wise distance of these points is at least δ.

Let o be the origin point. We consider the sphere Sd(o, r). Select two points
p1 and p2 on the sphere such that dist(p1, p2) = δ. Let θ be the angle � p1op2. It
is easy to see that

sin
θ

2
=

δ

2r
=

√
18ε

2
. (1)

By Lemma 4, we can select a set of points F of size cd( rd−1

δd−1 ) on the sphere
Sd(o, r) such that every two points of F have a distance at least δ.

We shift k copies of Sd(o, r) to Sd(oi, r) for i = 1, · · · , k. For each Sd(oi, r), let
Fi be the set of points shifted from F on Sd(o, r). Clearly, miniBall(Fi∪{oi}) ≤ r.
Let H = F1∪· · · Fk, which is the set of all the chosen points on the k spheres. By
Lemma 4 and (1), the set H has totally at least bd

(
k

ε(d−1)/2

)
points, where bd is a

positive constant for fixed d. For each subset H1 = {p1, · · · , pm} ⊆ H , construct
a stream of input points S(H1) = o1, · · · , ok, p1, · · · , pm. There are totally 2|H|

such streams of input points, each of which is uniquely derived from a subset of
H and contains the k centers in the first k points.

Assume there is a (1 + ε)-approximation streaming algorithm that uses <

bd

(
k

ε(d−1)/2

)
bits of memory. Those bits of memory has less than 2bd

�
k

ε(d−1)/2

�

different configurations. As the total number of subsets of H is more than

2bd

�
k

ε(d−1)/2

�
, there are two different subsets H1 and H2 of H such that the

algorithm has the same space configuration after running on both streams de-
rived from H1 and H2. We assume that H1 and H2 are different at Sd(oi, r). Let
p ∈ Sd(oi, r) be a point in H1 but not in H2. Let H1,i be the set of all points of
H1 on Sd(oi, r) and H2,i be the set of all the points of H2 on Sd(oi, r).

Let R = 2r. By Lemma 3 and (1), there is a point p∗ such that miniBall(H1,i∪
{oi, p

∗}) = R+r
2 = 3r

2 , and miniBall(H1,i ∪ {o, p∗}) − miniBall(H2,i ∪ {o, p∗}) ≥
2 sin2 θ

2
9 · miniBall(H1,i ∪ {o, p∗}) = ε · miniBall(H1,i ∪ {o, p∗}).
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We append the point p∗ to both data streams S(H1) and S(H2) to obtain data
streams S(H1)◦p∗ and S(H2)◦p∗, respectively. On the one hand, since the approx-
imation algorithm has the same memory configuration for both S(H1) and S(H2),
it will produce the same approximation for S(H1)◦p∗ and S(H2)◦p∗. On the other
hand, the optimal solution for S(H1) ◦ p∗ is miniBall(H1,i ∪{o, p∗}) and the opti-
mal solution for S(H2) ◦ p∗ is miniBall(H2,i ∪ {o, p∗}). We have that opt(S(H1) ◦
p∗) − opt(S(H2) ◦ p∗) ≥ ε · miniBall(H1,i) ∪ {o, p∗}) = ε · opt(S(H1) ◦ p∗). So,
opt(S(H2)◦p∗) ≤ (1−ε)·opt(S(H1)◦p∗). A (1+ε)-approximation app(S(H2)◦p∗)
for S(H2)◦p∗ has opt(S(H2)◦p∗) ≤ app(S(H2)◦p∗) ≤ (1+ε) ·opt(S(H2)◦p∗) ≤
(1 + ε)(1 − ε) · opt(S(H1) ◦ p∗) < opt(S(H1) ◦ p∗). So, app(S(H2) ◦ p∗) is not a
(1 + ε)-approximation for opt(S(H1) ◦ p∗), a contradiction to the early statement
that the algorithm produces the approximation for both streams. �

5 Conclusions

Data streams present novel and exciting challenges for algorithm design. Cluster-
ing is a well establish tool used in classification, data mining and other fields. For
the k-center clustering problem, we show an O( k

εd ) space (1 + ε)-approximation
streaming algorithm. We also prove that every (1 + ε) approximation stream-
ing algorithm requires Ω( k

ε(d−1)/2 ) bits space. An interesting open problem is to
close the gap between the lower bound and upper bound for the space for the
approximation streaming algorithm for the k-center problem.

References

1. Agarwal, P., Procopiuc, C.M.: Exact and approximation algorithms for clustering.
Algorithmica 33, 201–226 (2002)

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: STOC 1996, pp. 20–29 (1996)

3. Badoiu, M., Har-Peled, S.: Approximate clustering via core-sets. In: STOC 2002,
pp. 250–257 (2002)

4. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for
clustering problems. In: STOC 2003, pp. 30–39 (2003)

5. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic infomration retrieval. In: STOC 1997, pp. 626–635 (1997)

6. Chaudhry, N., Shaw, K., Abdelguerfi, M. (eds.): Data stream management.
Springer, Heidelberg (2005)

7. Eppstein, D., Miller, G.L., Teng, S.-H.: A deterministic linear time algorithm for
geometric separator and its applications. In: STOC 1993, pp. 99–108 (1993)

8. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: STOC
1988, pp. 434–444 (1988)

9. Feigenbaum, J., Kannan, S., Zhang, J.: Computing Diameter in the Streaming and
Sliding-Window Models. Algorithmica 41(1), 25–41 (2004)

10. Flajolet, P., Martin, G.: Probabilistic counting algorithms for data base application.
Journal of computer and system sciences 31, 182–209 (1985)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



On the Complexity of Approximation Streaming Algorithms 171

11. Fu, B., Wang, W.: A 2O(n1−1/d log n)-time algorithm for d-dimensional protein fold-
ing in the HP-model. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
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6 Appendix: Proof of Theorem 3

Proof. Let S be a set of points in �d. We construct a subset T ⊆ S. For each
point p not in T , define neighbor(p) to be the nearest point in T to p, and dist(p)
to be the distance from p to neighbor(p).

T = ∅;
dist(p) = ∞ for all p ∈ S;
while |T | ≤ k do {

D = max{dist(p)|p ∈ S − T };
let p′ ∈ S − T have dist(p′) = D;
T = T ∪ {p′};
update neighbor(p) and dist(p) for each p ∈ S − T

}
By the end of the algorithm, there are k + 1 points in T and every two points

in T have distance at least D. By pigeon hole principle, at least two of them are
in the same ball. Therefore, the optimal radius is at least D/2. Let each point
of T before the last assignment to D be the center of one ball. Since every point
p in S − T has dist(p) ≤ D, we have that each ball has radius at most D. The
cycle in the algorithm repeats at most k+1 times. Each time it costs O(n) steps
to update neighbor(p) and dist(p) to check the new element just added to the
set T . The total number of steps is O(n · k). The space is used for saving S, T ,
neighbor(p) and dist(p) for each point p ∈ S. Therefore, the space is O(n). �
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Abstract. We consider the problem of scheduling n jobs with release
times on an unbounded batch machine to minimize the maximum late-
ness. An unbounded batch machine is a machine that can process up to
b (b ≥ n) jobs simultaneously. The jobs that are processed together form
a batch, and all jobs in a batch start and complete at the same time.
The processing time of a batch is the time required for processing the
longest job in the batch. We present a linear time approximation scheme
for this problem.

1 Introduction

A batch machine is a machine that can process up to b jobs simultaneously as
a batch. The processing time of a batch is the time required for processing the
longest job in the batch. All jobs contained in the same batch start and complete
at the same time, since the completion time of a job is equal to the completion
time of the batch to which it belongs. The scheduling problems involve assigning
all n jobs to batches and determining the batch sequence in such a way that
certain objective function is optimized [2]. See [8] for definitions of scheduling
objective functions.

There are two distinct models for batch scheduling problems. In the bounded
model, the bound b for each batch size is effective, i.e., b < n. Problems of
this model arise in the manufacture of integrated circuits [9]. In the unbounded
model, there is effectively no limit on the sizes of batches, i.e., b ≥ n. Scheduling
problems of this model arise, for instance, in situations where compositions need
to be hardened in kilns, and a kiln is sufficiently large that it does not restrict
batch sizes [2]. In this paper, we are interested in the unbounded model.

Much research has been done on scheduling an unbounded batch machine.
Brucker et al. [2] provided a thorough discussion on minimizing various regu-
lar cost functions when all jobs have the same release time. For the problem of
� Corresponding author.
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minimizing total weighted completion time with release times, Deng and Zhang
[5] established its NP-hardness and presented polynomial time algorithms for
several special cases. Deng et al. [4] presented the first polynomial time ap-
proximation scheme (PTAS) for the problem of minimizing total completion
time with release times. Cheng et al. [3] investigated the problem of scheduling
jobs with release times and deadlines and established its NP-hardness. They
also showed the polynomial solvability of several special cases. Z. Liu et al. [10]
proved that minimizing total tardiness is NP-hard. In addition, they established
the pseudopolynomial solvability of the problem with release times and any reg-
ular objective.

Cheng et al. [3] pointed out that the problem of minimizing the maximum
lateness on an unbounded batch machine is NP-hard, but left the question of
algorithms open. In this paper we present a polynomial time approximation
scheme for this problem that runs in O(n)+C time, where the additive constant
C depends only on the accuracy ε. We apply the techniques in [1,2,6] to get this
result.

The remainder of this paper is organized as follows. In Section 2, we formulate
the problem and simplify it by applying the rounding method. In Section 3, we
present the linear time approximation scheme.

2 Preliminaries

The problem of scheduling an unbounded batch machine to minimize the maxi-
mum lateness can be formulated as follows. There are n independent jobs to be
processed on an unbounded batch machine that can process up to b (b ≥ n) jobs
simultaneously. Each job j is associated with a processing time pj , a release time
rj , and a due date dj . Each job is constrained to start after its release time, and
should be ideally completed before its due date. We assume that preemption is
not allowed. The processing time of a batch is the time required for processing
the longest job in the batch. All jobs contained in the same batch start and
complete at the same time, since the completion time of a job is equal to the
completion time of the batch to which it belongs. The goal is to schedule the
jobs on the unbounded batch machine so as to minimize the maximum lateness
max{Cj − dj}, where Cj denotes the completion time of job j in the schedule.

By setting a delivery time qj = dmax−dj for all jobs j (where dmax = maxjdj),
we get an equivalent model of the problem. The objective is now to find a
schedule that minimizes max{Cj + qj}. When considering the performance of
approximation algorithms, the delivery-time model is preferable [7]. Hence in
the sequel, we use instead the delivery-time formulation.

An algorithm A is a ρ-approximation algorithm for a minimization problem
if it produces a solution which is at most ρ times the optimal one, in time that
is polynomial in the input size. We also say that ρ is the worst-case ratio of
algorithm A. The worst-case ratio is the usual measure for the quality of an
approximation algorithm for a minimization problem: the smaller the ratio is,
the better the approximation algorithm is. A family of algorithms {Aε} is called a
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polynomial time approximation scheme (PTAS) if, for each ε > 0, the algorithm
Aε is a (1 + ε)-approximation algorithm running in time that is polynomial in
the input size. Note that ε is a fixed number, and thus the running time may
depend upon 1/ε in any manner.

In the following, we will apply the rounding method to form an approximate
version of the problem that has a simpler structure. We say, as in [1], that a
transformation produces 1 + O(ε) loss if it potentially increases the objective
function value by a 1 + O(ε) factor. We assume without loss of generality that
1/ε is integral. Let rmax = maxjrj , pmax = maxjpj , qmax = maxjqj .

We start by presenting the lower and upper bounds on the original optimal
value opt.

Lemma 1. max{rmax, pmax, qmax} ≤ opt ≤ rmax + pmax + qmax.

Proof. It is obvious that opt ≥ max{rmax, pmax, qmax}. On the other hand, we can
get a feasible schedule with objective value no more than rmax + pmax + qmax,
by starting a batch at time rmax to process all the jobs. Hence we get opt ≤
rmax + pmax + qmax. ��
Lemma 1 shows that any job will be delivered by time rmax+pmax+qmax in an op-
timal schedule. Let M = ε ·max{rmax, pmax, qmax}. We partition the time interval
[0, rmax + pmax + qmax) into 1/ε+1 disjoint intervals [0, M), [M, 2M), . . . , [(1/ε−
1)M, (1/ε)M), [(1/ε)M, rmax + pmax + qmax). We then round up each release time
rj to �rj/M� · M . Since M ≤ ε · opt, the objective value may increase by at most
ε · opt.

Next, we discuss small and large jobs (batches). We say that a job (or a batch)
is small if its processing time is less than εM , and large otherwise.

Lemma 2. Let k be the number of distinct processing times of large jobs. With
1 + ε loss, we assume that k ≤ 1/ε3 − 1/ε + 1.

Proof. Round each processing time of large jobs up to the nearest integer mul-
tiple of ε2M . This increases the objective value by at most ε · opt due to the
definition of large jobs. For each large job j, we know that εM ≤ pj ≤ (1/ε)M .
Hence we get k ≤ [(1/ε)M ]/(ε2M) − [εM/(ε2M) − 1] = 1/ε3 − 1/ε + 1. ��
A job is called available if it has been released but not yet been scheduled. Based
on the special property of an unbounded batch machine, we have the following
observation.

Lemma 3. There is an optimal schedule for the rounded problem (with rounded
release times and processing times) that has the following properties:

1) Any two processing times of the batches started in the same interval are
distinct; and

2) the batches started in the same interval are processed successively in the
order of increasing processing times; and

3) from time zero onwards, the batches are filled one by one such that each
of them contains all the currently available jobs with processing times no more
than the processing time of the batch.
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3 A Linear Time Approximation Scheme

In this section we will present the linear time approximation scheme for the
problem of scheduling an unbounded batch machine to minimize the maximum
lateness.

Consider a feasible schedule for the rounded problem. Remove from this sched-
ule all the batches that are started after time (1/ε)M . The remaining part is
called a partial schedule.

Given a partial schedule, we remove from it all the jobs and the small batches,
but retain all the empty large batches. Thereby we get an outline, which specifies
the processing times of the empty large batches started (but not necessarily
finished) in each of the first 1/ε intervals. The concept is motivated from [6].

Note that there are at most 1/ε large batches started in each of the first 1/ε
intervals. By Lemma 2, we know that the processing time of each large batch is
chosen from k ≤ 1/ε3 − 1/ε + 1 values. Combining Lemma 3, we can bound the
number of different outlines from above by

Γ =
[(

k
0

)
+

(
k
1

)
+ · · · +

(
k

1/ε

)]1/ε

< k1/ε2 .
Next, we give a description of the algorithm in [2] that solves the problem

of scheduling an unbounded batch machine to minimize the maximum lateness
exactly if all the jobs are released at time zero. Assume that jobs are indexed ac-
cording to the Shortest Processing Time (SPT) rule, so that p1 ≤ p2 ≤ · · · ≤ pn.
An SPT-batch schedule, is one in which adjacent jobs in the sequence (1, 2, . . . , n)
may be grouped to form batches. Brucker et al. [2] proved that there exists
an optimal schedule that is an SPT-batch schedule. They proposed a back-
ward dynamic programming algorithm that searches for such an optimal sched-
ule. Let Fj be the minimum value of the maximum lateness for SPT-batch
schedules containing jobs j, j + 1, . . . , n, where processing starts at time zero.
The initialization is Fn+1 = −∞, and the recursion for j = n, n − 1, . . . , 1 is
Fj = minj<k≤n+1{max{Fk + pk−1, maxj≤i≤k−1{pk−1 + qi}}}. The optimal solu-
tion value is then equal to F1, and the corresponding optimal schedule is found
by backtracking. The algorithm requires O(n2) time. We call this algorithm BDP
Algorithm.

Roughly speaking, our algorithm consists of two phases. In the first phase,
we generate partial schedules by enumerating all possible outlines. In the second
phase, we apply BDP Algorithm to schedule the remaining jobs at the end of
each partial schedule. From among the feasible schedules generated, we choose
the one with the minimum objective value.

Algorithm MML (Minimizing Maximum Lateness)

Step 1. Round the release times and processing times of the jobs as described
in the previous section. Group the small jobs with the same release time
together. Group the large jobs with the same release time and processing
time together.
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Step 2. Find the maximum delivery time among the jobs of each group. (The
information is useful for computing the objective values of the generated
schedules.)

Step 3. Get all possible outlines.
Step 4. For each of the outlines, do the following:

(a) Start the specified empty large batches as early as possible in
the order of increasing processing times. If some batch has to
be delayed to start in one of the next intervals, then delete the
outline.

(b) From time zero onwards, fill the empty large batches one by one
such that each of them contains all the currently available large
jobs with processing times no more than the processing time of
the batch.

(c) Start a batch with processing time at most εM , right before the
first large batch started in each of the first 1/ε intervals, to sched-
ule all the currently available small jobs. Stretch each of the first
1/ε intervals to make an extra space with length εM to accom-
modate the scheduled small jobs. Certainly, if an interval is cov-
ered entirely by a large batch, then we need not to stretch it for
scheduling small jobs.

Step 5. For each of the partial schedules generated above, do the following:
(a) View the remaining large jobs with the same processing time as

an aggregate large job whose delivery time is defined to be the
maximum delivery time among those jobs.

(b) At the end of the partial schedule (after time (1/ε)M), first start
a batch with processing time at most εM to schedule all the re-
maining small jobs, and then run BDP Algorithm to schedule the
aggregate large jobs.

(c) Compute the objective value of the obtained feasible schedule.
Step 6. From among the generated feasible schedules, choose the one with the

minimum objective value.

Theorem 1. Algorithm MML is a polynomial time approximation scheme that
runs in linear time for the problem of scheduling an unbounded batch machine
to minimize the maximum lateness.

Proof. Any feasible schedule for the rounded problem is associated with an out-
line. Given an outline that is associated with an optimal schedule for the rounded
problem, the way of Algorithm MML to schedule large jobs in the first 1/ε in-
tervals is optimal (by Lemma 3), the way to schedule aggregate large jobs in
the last interval is also optimal (by the optimality of BDP Algorithm), and
the way to schedule the small jobs increases the objective value by at most
εM · (1/ε + 1) ≤ (ε + ε2) · opt. Rounding the release times and processing times
of the jobs increases the objective value by at most 2ε · opt. Hence Algorithm
MML outputs a (1 + 3ε + ε2)-approximate schedule for the original problem.

We now discuss the time complexity of Algorithm MML. Steps 1 and 2 requires
O(n) time. Each outline can be generated in O(1/ε4) time, since there are at
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most k ≤ 1/ε3−1/ε+1 different processing times of large batches (by Lemma 2).
Recall that there are at most Γ < k1/ε2 different outlines. Step 3 can thus be
executed in O(1/ε3/ε2+4) time. Generating a partial schedule from an outline
needs O(1/ε4) time. Generating a feasible schedule from a partial schedule needs
O(1/ε6) time, since there are at most k ≤ 1/ε3 − 1/ε + 1 aggregate large jobs.
Steps 4 and 5 can thus be executed in O(1/ε3/ε2+6) time. Hence, Algorithm
MML runs in O(n + 1/ε3/ε2+6) time. ��
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Abstract. Process algebra provides essential tools for studying con-
current systems. An important branch of process algebra is value pass-
ing CCS. However, value passing CCS lacks not only action refinement,
which is an essential operation in the design of concurrent systems, but
also non-interleaving semantics, which is appropriate to specify the par-
tial order and equivalence relations. In this paper, we will define action
refinement and non-interleaving semantics by valued stable event struc-
tures and valued labeled configuration structures in which special valued
actions will be executed. The refinement operation and semantics are
useful for the hierarchical design methodology in value passing CCS, e.g.
top-down system design.

Keywords: value passing CCS, valued stable event structures, valued
labeled configuration structures, action refinement, semantics.

1 Introduction

Process algebra is a widely accepted language of specifying concurrent systems.
The fundamental work is done by Milner in CCS[25]. He defined the language of
value passing processes, called value passing CCS or full CCS. By far, the simple
pure CCS (without value passing) is well studied, and some researchers began to
study the bisimulations and equivalences of value passing CCS [1,11,26,17], and
the behavioral semantics for abstract data types in [4]. However, there has no
work done on the non-interleaving semantics of value passing CCS with action
refinement.

Action refinement is an essential operation in the top-down design of con-
current system. Actions are considered as the basic blocks of the process al-
gebras [14,15,16,8,2,24,19,20,22,7,5,6,18]. Through action, consider the system
behavior as an entity in certain level of abstraction. Action refinement theory
[13,14,15,16,8,2,24,19,20,22] gives the way of top-down design in concurrent sys-
tems. This makes it possible to design a system from an abstract level to a level
more concrete, and can be done level by level until no refinement is needed.
� This work was supported by the National Natural Science Foundation of China (No.

90612016 and 60473095).
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Action refinement of pure CCS has been well studied [13,15,16,20,22,23,24],
and it has also been applied to process algebra extended with probability, time
[4,5,6,18,19]. However, as we know, there have no work done on value passing
processes with action refinement so far, so we first propose it as a function on
value passing CCS.

Non-interleaving semantics is appropriate for true concurrency semantics. We
select valued stable event structures and valued labeled configuration structures
for the models of true concurrency in value passing CCS. The reasons are as fol-
lowing: (1), the concurrency models can roughly be distinguished in two kinds:
interleaving and non-interleaving. The interleaving model specifies the indepen-
dent execution of processes, and the non-interleaving one can represent the casual
relations between actions more explicitly; (2), some equivalence relations are not
preserved under the refinement of interleaving approach [23]. These equivalence
relations are often used to proof correctness of the implementation of concur-
rent systems. This problem can be well solved in non-interleaving models, (3),
non-interleaving is useful in model checking for partial order reduction [9].

We give a non-interleaving denotational semantics of value passing CCS with
action refinement in this paper, which makes it possible to design valued concur-
rent systems in the hierarchical methodology known as top-down system design
in software engineering.

This paper is organized as follows. Section 2 introduces the language of a
value passing CCS. Section 3 introduces valued event structures and operators
on them. Section 4 introduces action refinement both in syntax and semantics.
Section 5 shows the non-interleaving semantics. Section 6 concludes the paper.

2 Value Passing CCS

In this section we introduce the syntax of the language we consider in this paper.
The language is essentially the same as the one originally proposed by Milner in
[25].

Our language is given by the BNF-definition as follows:

t ::= 0 | √ | α.t | if b then t | t + t | t; t | t|t | t \ L | t[λ]
α ::= τ | c?x | c!e

0 is the inactive process capable of doing nothing;
√

is the termination pred-
icate; α.t is action prefixing where we have three kinds of actions: the invisible
action τ , representing internal communication, and the input and output actions
c?x and c!e respectively; if b then t is the (one armed) conditional construction;
t+t is nondeterministic choice (or summation); t; t is sequential composition;
t|t is parallel composition; t \ L, where L is a finite subset of Chan, is channel
restriction; t[λ], where λ is a partial function from Chan to Chan with finite
domain, is channel renaming.

Example 2.1 Here we give out the language of the system of Attendance Reg-
ister with the input device of FingerprintReader (short for ARF ), the ARF

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



180 G. Zheng et al.

ReadFingerprint(?) tau Respond(OKorTryAgain)
a b c d

Fig. 1. The event structure of ARF

system can read fingerprint, after some inner action τ(tau), then respond with
result of ‘OK’ or ‘TryAgain’, after that, system returns to the state of initializa-
tion. ARF := ReadFingerprint(?).τ.Respond(!v).ARF .

3 Valued Event Structures and Operators on Them

In this section, we introduce valued stable event structures and valued labeled
configuration structures, we define a compositional operator for general action
refinement on event structures and show that the subclass of stable event struc-
tures is closed under these operators [23,21,12].

3.1 Valued Stable Event Structures

Definition 3.1. (Valued stable event structures) A labeled event structure (over
an alphabet Act) with value is a 5-tuple EV�E = (EV �E , ConV �Con, �→V � �→,

√
, lv)

where

– EV �E , a set of valued events, the value of certain step can carry any possible
values of actions;

– ConV �Con, is a non-empty set of finite subsets of EV �E(the valued consistency
predicate) satisfying YV �Y ⊆ XV �X ∈ ConV �Con ⇒ YV �Y ∈ ConV �V , here
the time of YV �Y is earlier than that of XV �X and the V �X maybe different
from V �Y the same as that in [10];

– �→V � �→⊆ ConV �Con×EV �E , the enabling relationwith value, satisfyingXV �X �
ev′−v∧XV �X ⊆ YV �Y ∈ ConV �Con ⇒ YV �Y � e′v, here ev′−v refers to the value
changed between the state of v′ and v;

–
√ ⊆ ConV �Con, the termination predicate, satisfying ev 
∈ ConV �Con ∈ √ ⇒
XV �X ∪ ev 
∈ ConV �Con, the symbol

√
can do nothing but predicating the

termination, it neither does anything further in the system, nor carries value;
– lv : EV �E → ActV �E+v, the labeling function with value.

Example 3.1 Here, we depict the event structure of example 2.1 bye Fig.1, from
Fig.1, we can see clearly the data flow of ARF.

3.2 Operators on Valued Stable Event Structures

Similar with the operators on stable event structures, for detail in [1,10] we
describe the semantics of the operators in valued stable event structures as
following:
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Action prefix. Let αv.E 1V�E1
= (E1V�E1

∪{αv}, Con1V �Con1
∪{αv}, �→V ,

√
1 l1v�l1

∪
{αv})(up to isomorphism),where αv∈ObsV �Obs∪{τ}, andαv∈EV ENTV �EV ENT \E1;
�→V � �→=�→1V ��→1

∪({{αv}} × E1V �E1
).

Sequential composition. Let E1V�E1
; E2V�E2

= (E1V �E1
∪E2V �E2

, ConV �Con, �→V ��→
,
√

2, l1v�l1
∪ l2v�l2

), and ConV �Con = Con1V �Con1
∪ Con2V �Con2

∪ (
√

1 × E2V �E2
);

�→V � �→=�→1V ��→1
∪ �→2V ��→2

∪{√1× �→2V ��→2
}.

Choice. Let E1V�E1
+E2V�E2

= (E1V �E1
∪E2V �E2

, Con1V �Con1
∪Con2V �Con2

, �→1V ��→1

∪ �→2V ��→2
,

√
1 ∪ √

2, l1�l1 ∪ l2v�l2
)

Parallel composition. Let E1V�E1
|E2V�E2

= (EV �E , Con1V �Con1
∪Con2V �Con2

, �→1V ��→1

× �→2V ��→2
,
√

1∪√
2, l1v�l1

× l2v�l2
), and EV �E = (E1V �E1

×{∗})∪({∗}×E2V �E2
)∪

(E1V �E1
× E2V �E2

)
Relabeling. For relabeling function r : ActV → ActV ′ with r(0) = 0, r(τ) = τ

and r(
√

) =
√

, let αv ∈ ObsV �Obs, let E1V�E1
[r] = (E1V �E1

, ConV �Con, �→V � �→
,
√

, lv), where lv is the function composition of r and l(ev) = r(l1(ev′)).

3.3 Valued Labeled Configuration Structures

Definition 3.2. A valued labeled configuration structure is a triple CV�C =
(CV �C ,

√
, lv) where CV �C is a family of finite sets (the configurations),

√ ⊆ CV �C

is a termination predicate, satisfying X ∈ √ ∩ X ⊆ Y ∈ CCV�C ⇒ X = Y (i.e.
terminating configurations must be maximal), and lv :

⋃
XV �X∈CV �C

→ ActV is
a labeling function.

Let C denote the domain of configuration structures labeled over Act, and
CV�C denote the domain of valued configuration structures labeled over ActV .
The set EC of events of C ∈ C is defined by EC =

⋃
X∈CC

X , and the set ECV�C

of event with value of CV�C ∈ CV�C is defined by ECV�C =
⋃

XV �X∈CCV�C
XV �X .

3.4 Operators on Valued Configuration Structures

Compared with the operators on stable event structures, the operators on valued
configuration structures can only be described stepwise, action(s) can only be
taken by configurations step by step, we describe them as following:

Action prefix. Let αv.EV�E be the valued action prefix, and CE′′
V�E

−CE′
V�E

= ev

with αv = l(ev)
Sequential composition. Let E1V�E1

; E2V�E2
be the valued sequential composi-

tion, and Σ(CE′′
V�E

− CE′
V�E

) = e∗v, with ev ∈ {e1v1
∨ e2v2

|e1v1
∈ E1V �E1

∧ e2v2
∈

E2V �E2
∧ e1v1

< e2v2
}

Choice. Let E1V�E1
+E2V�E2

be valued choice, and Σ(CE′′
V�E

−CE′
V�E

) = e∗v, with
ev ∈ {e1v1

∨ e2v2
| e1v1

∈ E1V �E1
∧ e2v2

∈ E2V �E2
} and e∗v ∈ e∗1v�e1

or e∗v ∈ e∗2v�e2

Parallel composition. Let E1V�E1
|E2V�E2

be the valued parallel composition,
and Σ(CE′′

V�E
− CE′

V�E
) = e∗v, with ev ∈ {(e1v1

, ∗) ∨ (∗, e2v2
) ∨ (e1v1

, e2v2
)|e1v1

∈
E1V �E1

∧ e2v2
∈ E2V �E2

}
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4 Action Refinement

In this section, we will introduce action refinement into value passing CCS both
in syntax and semantics.

4.1 Value Passing CCS with Action Refinement

We will introduce a new calculator into value passing CCS: f value passing CCS
with action refinement. This syntactic action refinement in the value passing
CCS. And valued action could not affect the behavior of the action.

Definition 4.1. In order to make sure that there is no confusion of communi-
cation levels, like in [25,3], we have to sort out some “bound” actions. Formally,
the sort of a given expression P and PV �P (valued P ) is defined as follows:

Sort(0) = Sort(
√

) = Sort(αv) = Sort(α) = ∅;
Sort(αv .PV �P ) = Sort(α.P ) = Sort(P );

Sort(P1V �P1 ◦ P2V �P2) = Sort(P1 ◦ P2) = Sort(P1) ∪ Sort(P2),
for ◦ ∈ {; , +, |};

Sort(PV �P \A) = Sort(P\A) = Sort(P ) ∪ A;
Sort(PV �P [λ]) = Sort(P ) ∪ dom(λ)

By Act0 we denote a subset of Act with Sort(P ) ∪ {τ,
√} ⊆ Act0 that cannot

be refined. Let f : Act\Act0 → V PEpr be a function. We are interested in the
situation where the semantic model of f(α) is a refinement of action α. We call
f(α) a refinement of action α and f(αv) a refinement of action αv (valued α).

Example 4.1 Revisit Example 2.1, if we want to design the system ARF,
perhaps we would like the ARF to act in such a way in detail: when someone
put his/her finger on the system, the system would try to recognize the people
by the fingerprint, and at the same time, record the fingerprint no matter the
fingerprint can be recognized or not. If the system can recognized the fingerprint,
it will respond OK, otherwise, respond TryAgain instead, then, the system
returns to its initialized state.

Then, the refined ARF of Example 1.1 would be:

ARF := ReadFingerprint(fingerprint).ARF ′

ARF ′ := (CheckF ingerprint(fingerprint)|RecordLog(fingerprint)).ARF ′′

ARF ′′ := ((CheckF ingerprint(fingerprint) = True.Respond(OK)) +
(CheckF ingerprint(fingerprint) <> True.Respond(TryAgain))|
RecordLog(fingerprint)).ARF ′′′

ARF ′′′ := ((Respond(OK) + Respond(TryAgain))|RecordLog(fingerprint))
.ARF ′′′′

ARF ′′′′ := Done.ARF
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4.2 Action Refinement of Valued Event Structures

A refinement operator on valued event structures will be given by a function
ref specifying for each action αv an event structure ref(αv) which is to be
substituted for αv. We only consider non-forgetful refinements in this paper,
where as forgetful refinements refine some actions into an event structure with
∅ ∈ √

, or equivalently Con =
√

= {∅}.

Definition 4.2. (Action refinement of stable event structures)
(i) A function ref ′ : Act → E is called a refinement function (for stable event

structures) iff ∀a ∈ Act : ∅ 
∈ √
ref(a)

(ii) Let E ∈ E and let ref ′ be a refinement function.

Then the refinement of E by ref ′, ref ′(E), is the event structures defined by
the following:

– Eref ′(E) := {(e, e′)|e ∈ EE , e′ ∈ Eref ′(lE (e)},
– X̃ ∈ Conref ′(E) iff π1(X̃) ∈ ConE and ∀e ∈ π1(X̃) : πe

2(X̃) ∈ Conref ′(lE(e));
Conf(E) by ref;

– X̃ �ref ′(E) (e, e′) iff ready(X̃) �E e and πe
2(X̃) �ref ′(lE(e)) e′;

– X̃ ∈ √
ref ′(E) iff π1(X̃) ∈ √

E and ∀e ∈ π1(X̃) : πe
2(X̃) ∈ √

ref ′(lE(e));
– lref ′(E)(e, e′) := lref ′(lE(e))(e′);

with π1(X̃) := {e|∃f : (e, f) ∈ X̃}, πe
2(X̃) := {f |(e, f) ∈ X̃}

and ready(X̃) := e ∈ π1(X̃)|πe
2(X̃) ∈ √

ref ′(lE(e)) for X̃ ⊆ Eref ′(E)
from the Definition 4.2, we define action refinement of valued event structures

with the symbol of v in the form like V �C to represent the value bounded to
action ranging over scope �C .

Definition 4.3. Action refinement of valued stable event structures

(i) A function ref : ActV → EV �E is called a refinement function (for valued
event structures) iff ∀av ∈ ActV : ∅ 
∈ √

ref(a)
(ii)Let EV�E ∈ EV�E and let ref be a refinement function with value.

Then the refinement of EV�E by ref , ref(EV�E), is the event structure defined
by the following:

– Eref(EV�E ) := {(ev, e
′
v′)|ev ∈ EEV�E , e′v′ ∈ Eref(lE(ev)}, a set of valued events,

the value is in the form of matrix;
– X̃

�V � �X ∈ Conref(EV�E) iff π1(X̃�V � �X) ∈ ConEV�E and ∀ev1 ∈ π1(X̃�V � �X) :

πev1
2 (X̃

�V � �X) ∈ Conref(lEV�E (ev));

– X̃
�V � �X �ref(EV�E) (ev1, e

′
v2) iff ready(X̃

�V � �X) �EV�E ev1 and

πev1
2 (X̃

�V � �X) �ref(lEV�E ev1) e′v2;

– X̃ ∈ √
ref(E) iff π1(X̃) ∈ √

E and ∀e ∈ π1(X̃) : πe
2(X̃) ∈ √

ref(lEV�E (e));

– lref(EV�E)(ev1, e
′
v2) := lref(lEV�E (ev1))(e′v2)
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ReadFingprint(fingerprint)

RecordLog(fingerprint)

Check(fingerprint)

if Check=True Respond(OK)

else respond(TryAgain)

a b

tau

c
d

Fig. 2. The refined valued event structure of ARF

with EV�E ∈ EV , let ref be a refinement function, we call X̃
�V � �X a refinement of

configuration XV �X ∈ Conf(EV�E) by ref iff

– X̃
�V � �X =

⋃

ev∈XV �X

{ev} × Xev where

∀ev ∈ XV �X : Xev ∈ Conf(ref(lEV�E (ev))) − {∅}
– ev ∈ busy(X̃

�V � �X) ⇒ ev maximal in XV �X with respect to <EV�E where

busy(X̃
�V � �X) := {ev ∈ XV �X |Xev not terminated }

then Conf(ref(EV�E)) = {X̃
�V � �X |X̃

�V � �X is a refinement of a configuration XV�X ∈
Conf(EV�E)}

and π1(X̃�V � �X) := {ev1|∃fv2 : (ev1, fv2) ∈ X̃
�V � �X}, πev1

2 (X̃
�V � �X) :=

{fv2|(ev1, fv2) ∈ X̃
�V � �X}

and ready(X̃
�V � �X) := ev1 ∈ π1(X̃�V � �X)|πev1

2 (X̃
�V � �X) ∈ √

ref(lEV�E (e)) for

X̃
�V � �X ⊆ Eref(EV�E)

As usual, we verify the that ref(EV�E) is well-defined, even when isomorphic
event structures are identified. In addition we check that stability of EV�E and
ref is preserved.

Example 4.2, Here, we present Fig.2 as the refined system of ARF (Fig.1),
compared with Fig.1, Fig.2 has a state of tau, which is refined from the transition
of tau in Fig.1, from which we can see intuitively the refinement of valued ARF.

Proposition 4.1

– If EV�E ∈ EV�E and ref is a refinement function then ref(EV�E) is a valued
event structure indeed;

– If EV�E ∈ EV�E and ref , ref ′ are refinement functions with ref(αv) ∼=
ref ′(αv) for all αv ∈ ActV then ref(EV�E) ∼= ref ′(EV�E);

– If EV�E , FV�F ∈ EV�E, EV�E ∼= FV�F , and ref is a refinement function then
ref(EV�E) ∼= ref(FV�F);

– If EV�E is stable and ref(av) is stable for all av ∈ ActV then ref(EV�E) is
stable

Proof. Straightforward. �
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Definition 4.4

– A function ref : ActV → CV�C − {ε} is called a refinement function (for
labeled configuration structures with value).

– Let CV�C be a valued configuration structure and let ref be a refinement
function.

We call X̃
�V � �X a refinement of a valued configuration XV �X ∈ CCV�C by

ref iff
• X̃

�V � �X =
⋃

ev∈XV �X

{ev} × Xev where ∀ev ∈ XV �X : Xev ∈ Cref(lc(ev))−{∅};

• ∀YV �Y ⊆ busy(X̃
�V � �X) : XV ′�X′ − YV �Y ∈ CCV�C where busy (X̃

�V � �X) :=
{ev ∈ XV �X |Xev 
∈ √

ref(lCV�C (e))}; Such a refinement is terminated iff

∀e ∈ X : Xe ∈ √
ref(lC(e))}, i.e. iff busy (X̃) = ∅

The refinement of CV�C by ref is defined as ref(CV�C) = (Cref(CV�C),√
ref(C), lref(CV�C)) with

∗ Cref(CV�C) := {X̃
�V � �X |X̃

�V � �X is a refinement of some XV �X ∈ CCV�C

by ref};
∗ √

ref(C) := {X̃|X̃ is a terminated refinement of some X ∈ √
C by

ref};
∗ and lref(CV�C)(ev, e

′
v′) := lref(CV�C(ev))(e′v′) for all (ev, e

′
v′)∈ Eref(CV�C).

All the actions except those predicating termination carry no value, actions
satisfy the condition of ∀e ∈ {X : Xe ∈ √

ref(lC�C(e))} just evolve without value

(
√
−→ 0), or they carry the value {∅}, we omit it for short here.

Example 4.3 Here we depict the refined system of ARF on labeled configura-
tion structure by Fig.3.

Now, it is time for us to show that refinement is a well-defined operation on
labeled configuration structures, even when isomorphic configuration structures
are identified.
Proposition 4.2

– If CV�C ∈ CV�C and ref is a refinement function then also ref(CV�C) is a
valued configuration structure;

– If CV�C ∈ CV�C and ref , ref ′ are refinement functions with ref(av) ∼=
ref ′(av) for all av ∈ ActV then ref(CV�C) ∼= ref ′(CV�C);

– If CV�C, DV�D ∈ CV�C and ref is a refinement function and CV�C ∼= DV�D
then ref(CV�C) ∼= ref ′(DV�D).

Proof. Straightforward. �

Lemma 4.1. Let CV�C be a valued configuration structure and let ref be a re-
finements function. Then X̃

�V � �X ∈ Cref(CV�C) iff there is a configuration XC�X ∈
CV�C such that

– X̃
�V � �X =

⋃

ev∈XV �X

{ev} × Xev where ∀ev ∈ XV �X : Xev ∈ Cref(lCV�C (ev));
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ReadFingerprint(?)

ReadFingerprint(fingerprint)

Check(fingerprint)

ReadFingerprint(fingerprint)
Check(fingerprint)

RecordLog(fingerprint)

ReadFingerprint(fingerprint)
Check(fingerprint)=Ture

Respond(OK)
RecordLog(fingperprint)

ReadFingerprint(fingerprint)
Check(fingerprint)<>True

Respond(TryAgain)
RecordLog(fingerprint)

if Check(fingerprint)=Ture else

Respond(OK) Respond(TryAgain)

a

b

tau

c

ReadFingerprint(fingerprint)
Check(fingerprint)=Ture

Respond(OK)
RecordLog(fingerprint)

Done

ReadFingerprint(fingerprint)
Check(fingerprint)<>True

Respond(TryAgain)
RecordLog(fingerprint)

Done

d

Fig. 3. The refinement on valued labeled configuration structure of ARF

– ∀YV �Y ⊆ busyXV �X (X̃
�V � �X) : XV �X − YV �Y ∈ CCV�C where

busyXV �X (X̃
�V � �C) := {ev ∈ XV �X |Xev 
∈ √

ref(lC�C)(e)}.

Proof. “Only if” is given by Definition, but “if” is not, because we do not require
here that Xev 
= ∅. So it is easy to get X̃

�V � �X ∈ Cref(CV�C). �

5 A Non-interleaving Semantics

The refinement function f introduced in Sect 4.1 is defined on a syntactic level,
and we call it syntactic. The refinement function ref presented in Sect 4.2 uses
semantic object, i.e. valued stable event structures and valued labeled configu-
ration structures, as the definition domain, and we call it semantic.

Let f : Act\Act0 → V PEpr be a syntactic refinement function for expression
P , and ref : ActV → EV �E be a semantic refinement function. Since we are
interested in the refinement of an already given expression P , we suppose in the
following that all the expressions and operators mentioned occur in P .

Lemma 5.1

C(f(αv.P1V �P1)) =
{

C(αv.f(P1V �P1)), if α ∈ Act0;
C(f(αv.P1V �P1)) = C(f(αv); f(P1V �P1)), otherwise ;(1)

C(f(◦(P1V �P1))) = C(◦f(P1V �P1)), ◦ ∈ {\A, [λ]}; (2)
C(f(P1V �P1 ◦ P2V �P2)) = C(f(P1V �P1) ◦ f(P2V �P2)), ◦ ∈ {; , +, |}. (3)

Proof. straight forward �
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In the sequel, we show that the claim also holds for the case of parallel compo-
sition and a similar result holds for recursion.

Lemma 5.2. C(f(P1V �P1|P2V �P2)) ≈C(f(P1V �P1)|f(P2V �P2)).
Proof. straight forward �

Lemma 5.3. C(f(P1(ēv̄))) ≈ C(ref(P1(ēv̄)))
Proof. For convenience, we denote f(P1(ēv̄)) by Ef and ref(P1(ēv̄)) by Eref

V�E .
We need to prove C(Ef

V�E) ≈ C(Eref
V�E). Let EV�E = P1(ēv̄), EiVi�Ei = viP1V �P1(⊥),

Efi = f(Ei) and Erefi
∼= viref(Ei)(⊥).

We can write any σf
v ∈ C(Ef

V�E) as f(σv, ∪evσev ), where σv ∈ C(EV�E) and
σev ∈ C(f(l(ev))) with ev ∈ E(σv) and let l(ev) 
∈ Act0V , and σev successfully
terminates if ev is not maximal in σv. Clearly, there exists i ≥ 0 such that
σv ∈ C(EiV�Ei), and σev ∈ C(f(li(ev))), and σf

v ∈ C(Efi
V�E). However, there exists

σref
v ∈ C(Erefi

V�E ) ⊆ C(Ef
V�E), such that σf

v ≈ σref
v .

Symmetrically, for an arbitrary σref
v ∈ C(Eref

V�E), there exists σf
v ∈ C(Ef

V�E),
such that σref

v ≈ σf
v . �

If we denote by Ef
V�E and Eref

V�E the event structure defined in Lemmas 5.2 and 5.3,
there the set H = {(σf

v , σref
v , h)|σf

v ∈ C(Ef
V�E)}, where σref

v and h are constructed
from σf

v as in Lemmas 6.2 and 6.3, is a history preserving bisimulation between
Ef
V�E and Eref

V�E .

Theorem 5.1. Let P ∈ V PEpr, f : Act\Act0 �→ V PEpr a syntactic refinement
function for P , and ref : Act \ Act0 �→ V ES (VES short for valued event
structures), f(αv) = ref(αv) for for all αv, αv ∈ ActV \ Act0. Then ref is a
semantic refinement function, and f(PV �P ) ∼= ref(PV �P ).

Proof. We have already demonstrated that f is a semantic refinement function.
Thereby we prove the second statement. It is obviously true for 0 and

√
. The

conclusion for recursion has already been proved. Now suppose that it is true
for P1 and P2. We look at the other operators.

If αv 
∈ Act0V ,

f(αv.P1V �P1) = αv.f(P1V �P1);
f(P1V �P1) ∼= ref(P1V �P1);
ref(αv.P1V �P1) = αv.ref(P1V �P1).

The conclusion for the case where αv ∈ Act0V follows analogously.
For ◦ ∈ {\A, [λ]},

f(◦P1V �P1) = ◦f(P1V �P1) ∼= ◦(ref(P1V �P1)) = ref(◦P1V �P1)
For ◦ ∈ {; , +, |},

f(P1V �P1 ◦ P2V �P2) = f(P1V �P1) ◦ f(P2V �P2)
∼= ref(P1V �P1) ◦ ref(P2V �P2)
= ref(P1V �P1 ◦ P2V �P2) �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



188 G. Zheng et al.

Table 1. The coincident states between syntax and non-interleaving semantics of re-
fined ARF

State Sequence Example 4.1 Example 4.2 Example 4.3

State 1 ARF a a

State 2 ARF ′ b b

State 3 ARF ′′ tau tau

State 4 ARF ′′′ c c

State 5 ARF ′′′′ d d

Example 5.1 Revisit examples of 4.1, 4.2 and 4.3, we can intuitively get the non-
interleaving semantics of example 2.1 by example 4.2 and 4.3, and they can be
show clearly by table 1:

6 Conclusions

In this paper, we have introduced the language of value passing CCS. In order to
show the non-interleaving denotational semantics of value passing CCS, we de-
fined valued stable event structures and valued labeled configuration structures.
Value passing CCS has several operators, and we gave denotational definition
of them with event structures mentioned above. In order to improve the ex-
pressiveness of value passing CCS to meet the need of hierarchical methodology
in the system design, we added action refinement operation into value passing
CCS without distinguishing semantics between the early and the late as [1]. We
also showed the syntactic and non-interleaving semantic refinement of the value
passing CCS.

In this paper, we treated the value as binding to action. Some actions can be
executed without value i.e. 0 and

√
, others must run with value of certain form

and type. As value plays an center role in the development of the computational
theory, this work is much more significant in practice.
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Abstract. With the development of network and distributed systems,
more and more security protocols rely heavily on time stamps, which are
taken into account by a few formal methods. Generally, these methods
use constraints to describe the characteristic of time variables. However,
few of them give a feasible solution to the corresponding constraints solv-
ing problem. An effective framework to model and verify time sensitive
security protocols is introduced in [1], which doesn’t give an automatic
algorithm for constraints solution. In this paper, an effective method is
presented to determine whether the constraints system has a solution,
and then implemented in our verifying tool SPVT. Finally, Denning-
Sacco protocol is taken as an example to show that security protocols
with time constraints can be modeled naturally and verified automati-
cally and efficiently in our models.

Keywords: time sensitive; security protocol; constraint; algorithm.

1 Introduction

With the development of network and distributed systems, more and more se-
curity protocols rely heavily upon time stamps or counters instead of nonces to
prevent from replaying and redirecting messages. However, the problem is that
while the value of a nonce is not predictable, the value of a counter or a time
stamp is. Hence, new attacks could be produced by counters or time stamps
instead of nonces. Therefore, the verification method has to take into account
this predictable feature. The complexity of security protocols and the size of dis-
tributed systems have often been too great to analyze without formal methods.
However, introducing time into a protocol analysis framework brings complica-
tions, because the verification method should deal with some time-dependent
behavior and concern the required property with time. So it is very urgent to
find an appropriate analysis for sensitivity to time.

The use of time stamps can be described as follows: the sender issues a fresh
message with the time stamp that marks its time of issue; then, the receiver
� Supported by the National Natural Science Foundation of China under Grant No.

60473057, 90604007.
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checks whether the time stamp has not expired to establish the validity of the
message. For the relation between times is the powerful one to determine whether
messages are valid or not, the order of these time stamps must be researched.
Using constraints of time variables and clocks is the best way to build this re-
lation. In fact, time sensitive security protocols can be naturally specified by
constraints programming and verified by symbolic operation. The constraints
solution in verification of protocols is too important but few work on them. If
they want to verify time sensitive protocols with constraints in current formal
methods, they need to use the tools which solve general constraints. So the
efficiencies of those methods will drop down. To improve the efficiency of verifi-
cation, this paper researches the constraints system in the verification of security
protocols and presents a simple and natural method to determine the solution
of constraints in Horn logic model.

Related work. Many approaches focus on the study of protocols that use time
stamps [2,3,4,5,6,7,8,9]. [2] also analyzes protocols with timing information, and
his approach is based on a discrete time model. [3] uses a model with discrete
time and an upper bound on the time window, and finds a timed-authentication
attack on Wide Mouthed Frog protocol. [4] makes a semi-automated analysis on
a Timed CSP model of Wide Mouth Frog protocol, and uses PVS to discharge
proof obligations so as to find an invariant property. [5] presents a real-time
process algebra for the analysis of time-dependent properties. It focuses on com-
positional results and show how to model timeouts. The theory of timewise
refinement [6] allows results to be translated between the untimed and timed
models, enabling verifications to be carried out at their most appropriate level
of abstraction and then combined if necessary from different models. [7] proposes
a method for design and analysis of security protocols that are aware of timing
issues. It models security protocols using timed automata, and uses UPPAAL
to simulate, debug and verify protocols. The verification method in [8] is based
on the combination of constraint solving technology and first order term ma-
nipulation, and it uses Sicstus Prolog to solve constraints. He assumes a global
clock and verify the Wide Mouthed Frog protocol. [9] presents a symbolic deci-
sion procedure for time-sensitive cryptographic protocols with time stamps. It
uses logic formulae to describe symbolic constraints. But it doesn’t give an auto-
matic method to determine how to pick time variables for obtaining an attack.
So this is the first paper concerning with the constraints solution in verification
of security protocols.

Bruno Blanchet and Martin Abadi have proposed a security protocol model
based on Horn logic in [10,11,12]. Based on this model, a very efficient verifi-
cation method is also presented which fits for verifying interleaving runs of the
security protocol’s infinite sessions and terminates for many security protocols.
In [13,14], an extended Horn logic model for security protocols is proposed, and
the modified-version verification method to construct counter-examples auto-
matically is presented. The counter-examples are represented in standard nota-
tion, which is more elegant and intelligible than the representation form based
on traces. Based on these principles and methods, an effective verifier SPVT
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(Security Protocol Verifying Tool) is developed, and many classic protocols are
verified by it. To verify time sensitive security protocols, we extends this model to
verify protocols with time stamps effectively in [1]. [1] also verifies Wide Mouthed
Frog protocol. However, [1] doesn’t give an automated method to find whether
or not the constraints have a solution. This paper will discuss how to determine
this problem automatically and effectively. For discussing the constraints system
in detail, the principle of verifying time sensitive security protocols on Horn logic
will be omitted. If the reader is very interested in this theory, please refer to [1].

It is a problem in linear programming whether a constraints system has a solu-
tion, and there are many methods to decide whether or not a linear programming
problem has a solution, such as Simplex method and Fourier-Motzkin algorithm.
In [15,16,17,18], however, these methods couldn’t determine efficiently and sim-
ply whether the constraints system in verification of protocols has a solution.
To avoid redundant operations, we study some classic methods and give an effi-
cient one to solve our problem in verification. The original problem is translated
to the one that is to find a special cycle in the graph. It is a classic problem
to find cycles in graph theory, so we can choose a more convenient method to
solve it. The correctness of this translation is given by some theorems in this
paper. There are also too many methods to find cycles in a graph, and we apply
the method in [19] to solve our problem. And then, we give an algorithm to
determine whether the constraints system has no solution. At last, we give an
example in Denning-Sacco protocol to present the work of our method.

Plan of the Paper. In Section 2 we introduce our models in security protocols.
In Section 3 we research our constraints system and give an efficient method
to determine whether or not constraints system has a solution. In Section 4 we
implement this method in our tool SPVT, and give an example how to find
whether a constraints system has no solution. In Section 5 we give a conclusion
to this paper, and discuss the future work.

2 Models of Protocol

In this section, we will introduce two models: the process calculus model for
modeling a security protocol in section 2.1 and the Horn logic model for verifying
it in section 2.2.

2.1 Protocol Representation in the Process Calculus

Security protocols are distributed parallel programs and can be described as the
parallel composition of multiple role-processes using π-like calculus in [12]. We
propose a π-like calculus for modeling security protocol in [1], which is Applied-π
calculus [20] added some time events and is described in Table 1.

The π-like calculus is similar to the calculus in [12], and also has two parts:
terms(data) and processes(programs). The identifiers x, y, z, and similar ones
range over variables, and a, b, c, k range over names. f is a constructor which
is used to build terms. The processes are defined similarly to [12], but we add

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



194 Z. Li et al.

Table 1. The syntax of the process calculus

M, N ::= Terms
x, y, z variable
a, b, c, k Name
f(M1, · · · , Mn) Constructor

P, Q::= Processes
c̄ < M > .P Output
c(x).P Input
0 Nil
P |Q Parallel
!P Replication
(νa)P Restriction
let x = g(M1, · · · , Mn) in P Destruction
if M = N then P Condition
begin(M,M ′).P Begin event
end(M,M ′).P End event
Check(t).P Check event
Mark(t).P Mark event
Set d = int in P Set event
F ly(d).P Fly event

to it four time events: Check, Mark, Set, Fly. These events are used to deal
with time stamps. Check event is used to check whether the time stamp is valid
or not. The parameter d represents the lifetime of a message, that is the most
allowable network delay. This event appears when the process receives a message
with time stamps and need to check its freshness. Mark event is used to mark
t as the current clock now when the sender wants to issue a fresh message with
the time of issue, that is, t equals to the current value of now. Set event is used
to assign a value of lifetime to d. Fly event is used to declare time rolls by, that
is, the current clock now passes a period d.

2.2 The Model with Time Constraints on Horn Logic

Syntax [1] first introduces some special terms that can be used to represent time
variables, and time functions. The syntax of the model with time constraints on
Horn logic is described in Table 2.

The Horn logic uses these predicates:attacker,begin, and end. attacker(M)
means that the attacker may have M , begin(M, N) that the event begin has
been executed with a parameter corresponding to M and environment N , and
end(M, N) that end has been executed in session list N with a parameter cor-
responding to M . [1] defines a global clock now which is a special place-holder,
and if the constraint is true, then the rule will ignore this constraint, that is,
H1 ∧ · · · ∧ Hn → F means H1 ∧ · · · ∧ Hn → F : true. The clock now represents
current time. The sender overprints time stamps referring to now. When the
receiver receives this message, he will check time stamp with the current time.
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Table 2. The syntax of the model with constraints on Horn logic

Term M,N,Mes::=
time variable t1, t2, · · · ,
time function tf(t1, · · · tn) where t1, · · · , tn are time variables or

time functions; if n = 0, then tf is a time constant.
variable x, y, z
name a[M1, · · · , Mn],i,j
function f(M1, · · · , Mn)

Atom, Fact F,C::=
attacker predicate attacker(M)
begin predicate begin(M,N)
end predicate end(M, N)

Constraint C::=
f(x1, · · · , xn)#g(y1, · · · , ym)|C1, C2,
where f and g are n-ary and m-ary functions
which return linear combination of these variables,
# ∈ {<, =, ≤}.

Rule R,R′::=
logic rule F1 ∧ · · · ∧ F ′

n → F : C where C is constraint.

If time stamp has not expired, he will believe the message is still valid. The
parameters representing network delays can be assigned in the beginning.

Translation to Horn logic. The model of roles in security protocols is a
group of logic rules. [10,11,12] discuss the model on Horn logic, and we add
time constraints to this model in [1] so that this model can verify time sensitive
security protocols. In logic rules, d is a parameter representing network delay. If
we want to do anything with some rule, we must be sure that the constraints
of it can be satisfiable. The constraints of rules in Dolev-Yao model are true in
[1], which means those constraints will be always satisfied, so we will not present
them in this paper. But [1] adds a new rule in the attacker model. Suppose the
lifetime of the session key k created at the clock t is D(D is a big time constant),
and session keys can only be leaked by accident when they have expired, as our
model shows, the following attack is possible.

→ attacker(k(t)) : now ≥ D + t

The honest roles are described by the process calculus in Section 2.1. The
translation�P �ρhC of a process P is a set of rules, where the environment ρ is
a sequence of mappings x �→ p and a �→ p from (time) variables and names to
patterns, h is a sequence of facts of the form attacker(M) and begin(M, M ′), and
C is a list of constraints. The empty list is denoted by ∅, the concatenation of a
constraint aCons to the list C is denoted by C ∪ {aCons}. exp1#exp2#exp3 is
short for two constraints: exp1#exp2 and exp2#exp3, where # ∈ {<, ≤}. The
concatenation of a mapping x �→ M to ρ is denoted by ρ[x �→ M ], where x is a
name or a variable. [1] gives abstracting rules for our process calculus as follows:”
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(1) �0�ρhC = ∅;
(2) �P|Q�ρhC = �P�ρhC ∪ �Q�ρhC;
(3) �!P�ρhC = �P�ρ[i �→ i]hC, where i is a new variable(session identifier);
(4) �ν(a)P �ρhC = �P�ρ[a �→ a[ρ(V0), ρ(Vs)]]hC, where V0 is the tuple made up

with input variables, Vs is the set of session identifiers, and a becomes a new
function symbol;

(5) �c(x).P�ρhC = �P�ρ[x �→ x](h ∧ attacker(x))C;
(6) �c̄ < M > .P�ρhC = �P�ρhC ∪ {h → attacker(ρ(M)) : (ρ(C))});
(7) �let x=g(M1, · · · , Mn) in P else Q�ρhC =

⋃
{�P�(σρ)[x �→ σ′p′](σh)(σC)|

g(p1, · · · , pn) → p′, where, the pair (σ, σ′) is a most general unifier one, such
that σρ(M1) = σ′(p1), · · · , σρ(Mn) = σ′(pn)} ∪ �Q�ρhC;

(8) �Begin(M).P�ρhC = �P�ρ(h ∧ begin(ρ|(Vo∪Vs), ρ(M)))C;
(9) �End(M).P�ρhC = �P�ρhC ∪ {h → end(ρ(Vs), ρ(M)) : (ρ(C))};

(10) �Check(t).P�ρhC = �P�ρh(C ∪ {now − d ≤ t ≤ now});
(11) �Mark(t).P�ρhC = �P�ρh(C ∪ {t = now});
(12) �Set d = int in P�ρhC = �P�(ρ[d �→ int])hC;
(13) �Fly(d).P�ρhC = �P�ρh{now − exp1 − d#exp2 | ∀lineq ∈ C, and lineq =

now−exp1#exp2, where#∈{<, ≤}, exp1, exp2 are algebraic expressions.}.

The translation of a process is a set of Horn clauses with constraints that enable
us to prove that it sends certain messages or executes certain events in the con-
straints. The list C keeps conditions, and when they are satisfiable, the body of
rule may trigger the head. From the translation, only the last four events will bring
the change of constraints. The translation of a Check adds two constraints, mean-
ing that the process will believe the time stamp t is new when t is in a time interval
[now − d,now]. P can be executed after the message has been checked and these
constraints are satisfiable. The translation of a Mark adds a constraint, meaning
that P fetches the current time as its time stamp. The translation of a Set adds a
mapping d �→ int to the environment ρ. This event is used to assign the lifetime of
messages, so the receiver will believe the message is new when the receiving time
minus the lifetime is less than or equal to the time stamp. The translation of a Fly
modifies constraints to loosen the lower bound made by now.

3 Constraints System

3.1 The Feather of Our Constraints System

Definition 1. A TVPI system is a system of linear inequalities where each in-
equality involves at most two variables. A TVPI system is called monotone if each
inequality is of the form axi−bxj ≤ c, where both a and b are positive. If a = b = 1,
we call this system is a uni-TVPI system.

In our system, inequalities can be generated by the following case:

– Check event: this event will check if the time stamp t is valid, so now−d ≤ t ≤
now will be added to constraints system C. This event introduces inequalities
that are of the form x − y ≤ c.
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– Mark event: this event only generate equality t = now.
– Set,Fly events: they only modify time constants, and don’t add or minus in-

equalities in our system.

Therefore, our constraints system is a uni-TVPI system. we can use the Fourier-
Motzkin elimination method for finding a feasible solution of a uni-TVPI system.
We begin by an informal description of the method for our system.(The reader is
referred to [15] for more details.)

Let the variables of our system be x1, · · · , xn and let the set of inequalities be
denoted by E. The variables are eliminated one by one. At step i, our system will
only contain variables xi, · · · , xn; the set of inequalities at step i is denoted by
Ei,where initially E1 = E. To eliminate variable xi, all the inequalities in which
xi participates are particioned into two sets, L and H , where L = {xj − c|xi ≥
xj − c ∈ Ei}, and H = {xj + c|xi ≤ xj + c ∈ Ei}. And then, Ei+1 = {l ≤ h|l ∈
L, h ∈ H} ∪ Ei\(L ∪ H).

Theorem 1. The TVPI system Ei+1 has a feasible solution if and only if the TVPI
system Ei has a feasible solution.

Hence, a feasible solution can be computed recursively for Ei+1 and then extended
to Ei. The main drawback of this method is that the number of inequalities may
grow exponentially.

Lemma 1 (Farkas’ Lemma). Ax ≤ b has no solution if and only if some non-
negative linear combination of the inequalities of the system yields 0 ≤ −1.

In a uni-TVPI system, we can make a stronger statement:

Theorem 2. A uni-TVPI system S has no solution if and only if there is a se-

quence t1 ≥ t2 + d1, t2 ≥ t3 + d2, · · · , tn ≥ t1 + dn, and
n∑

i=1
di > 0.

Proof. ”⇐”: A positive linear combination of the sequence is
n∑

i=1
ti ≥

n−1∑

i=1
(ti+1 +

di)+t1+dn which yield 0 ≥
n∑

i=1
di. This result conflicts with the condition

n∑

i=1
di >

0, so 0 ≤ −1 can be derived. By Farkas’ Lemma, this system has no solution.

”⇒”: this system has no solution, so, by Farkas’ lemma, there exists some non-
negative linear combination yielding 0 ≤ −1.
(1) Suppose there is no such a sequencelike this: t1 ≥ t2+d1, t2 ≥ t3+d2, · · · , tn+1
≥ t1 + dn, then for any non-negative linear combination of the uni-TVPI system,
there is a variables x which appears in the left of the linear combination but not
in the right, that is, the result of the linear combination is the form “x ≥ other-
variables-linear-combination +d ”. This result couldn’t yield ”0 ≤ −1”, which
contradicts the condition.
(2) Suppose for every sequence ti ≥ ti+1 + di(i = 1, · · · , n), tn = t1,

∑n
i=1 di ≤ 0.

By Farkas’ lemma, there are two sequences ai > 0 and ei ∈ S(i = 1, · · · , n) such
that

∑n
i=1 aiei ⇒ 0 ≤ −1. From any e ∈ {ei|0 < i < n + 1}, there should be a
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sequence ei1 = e, ei2 , · · · , eik
which are distinct and belong to {ei|0 < i < n + 1},

and they can be written in the form ti ≥ ti+1 + di(i = 1, · · · , n, tn+1 = t1).

Otherwise,
k∑

j=1
eij ≡ x ≥ y + c, and there isn’t y ≥ z + d in S, ∴ y will not be

eliminated, so
n∑

i=1
aiei � 0 ≤ −1, contradiction. Therefore, we can split

n∑

i=1
aiei to

many sequences as above. Suppose
n∑

i=1
aiei ≡ (e11 +e12+ · · ·+e1j1)+ · · ·+(em1 +

· · · + emjm) ≡
m∑

k=1
(0 ≥

jk∑

i=1
dki) ≡ 0 ≥

m∑

k=1

jk∑

i=1
dki. Because of our assumption

∑
di ≤ 0 in this formal sequence, 0 ≥

m∑

k=1

jk∑

i=1
dki is true, that is,

n∑

i=1
aiei � 0 ≤

−1, contradiction. ��

3.2 Algorithms for the Solution of Our System

In this subsection we show how to determine whether or not a uni-TVPI system
has solution. Recall from the previous subsection the idea of our algorithm is as
follows:

Suppose ti has a greatest lower bound ti+1 + di(i = 1, · · · , n), and tn+1 = t1.

Using resolution, one obtains a sequence of inequalities t1 ≥ ti+1 +
i∑

j=1
dj(i =

1, · · · , n). The last one will yield 0 ≥
n∑

i=1
di. If

n∑

i=1
di is actually greater than 0,

there is a contradiction, that is, the system can’t be satisfied.

An equivalent representation of the uni-TVPI system S is by the directed graph
G =< V, E >. The vertex set V contains vertices t1, · · · , tn; an edge eij from
vertex ti to tj(1 ≤ i, j ≤ n) represents the inequality ti ≥ tj + d and is labeled by
max{d|ti ≥ tj + d ∈ S}. The algorithm for constructing the graph is as follows:

ALGORITHM 1 (the construction of the graph). Constructing a graph G
corresponding to a uni-TVPI system S as follows:

– For each variable ti(i = 1, · · · , n), generate a vertex ti corresponding to it.
– For every inequality ti ≥ tj + c,

if there is an edge eij =< ti, tj >, and the weight of it is d,
then let the weight be max{c, d}
else generate an edge eij =< ti, tj >, and let the weight of it be d.

Definition 2. A path from a vertex u to a vertex u′ in a graph G =< V, E >
is a sequence v0e1v1e2 · · · vn, where u = v0, u

′ = vn, ei =< vi−1, vi >∈ E for
i = 1, · · · , n. The path is closed if v0 = vn. The path is simple if v0, · · · , vn are
distinct. The path is a cycle if it is closed and the subpath from v1 to vn is simple.
The path has a cycle if there exists i, j(0 ≤ i ≤ j ≤ n) such that viei+1 · · · vj is a
cycle.
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We will use the adjacency-matrix representation of G in our algorithm. This rep-
resentation consists of a |V | × |V | matrix Adj such that

Adjij =
{

d if (vi, vj) ∈ E and its weight is d
⊥ otherwise

Proposition 1. A uni-TVPI system S has a sequence ti ≥ ti+1 + di(1 ≤ i ≤ n)

if and only if there is a path t1
d′
1−→ t2

d′
2−→ · · ·

d′
n−1−−−→ tn in the corresponding graph

G.

Theorem 3. A uni-TVPI system S has no solution if and only if there is a cycle

t1
d1−→ t2

d2−→ · · · dn−1−−−→ tn
dn−→ t1 in the corresponding graph G, and

n∑

i=1
di > 0.

Now we need find all cycles in the graph and check whether the constraints system
has no solution by theorem 3. [19] gives an algorithm to find all primary oriented
circuits in a simple digraph by constructing L-matrices. We modify this method
and give an on-the-fly algorithm to find a cycle which satisfies

∑
d > 0.

Definition 3. L-word is defined as the vertex index sequence of simple paths or
cycles. The set of L-words is L-set. The matrix M = (Mij)n×m is L-matrix if
for every element Mij in M, Mij is an L-set.

Definition 4. Let M = {mi|i = 1, · · · , r}, N = {ni|i = 1, · · · , s} be two L-sets.
The joint of M and N is defined as follows:

M ∗ N =

⎧
⎨

⎩

M ∗ N = ∅ if M = ∅ or N = ∅
{minj | mi ∈ M, nj ∈ N and |mi| > 0,

|nj | > 0, minj is an L-word} otherwise

Obviously, M ∗ N is an L-set.

Definition 5. Let M = (Mij)n×k, N = (Nij)k×p be two L-matrices. The joint of

M and N is Q = (Qij)n×p = M ∗ N , where Qij =
k⋃

r=1
(Mir ∗ Nrj), 1 ≤ i ≤ n, 1 ≤

j ≤ p.

Definition 6. Let G =< V, E > be a simple directed graph and |V | = n, then
the L-matrix M1 = (M1

ij)n×n is L-adjacency-matrix representation of G, where

M1
ij =

{
∅ , (vi, vj) /∈ E
{ij}, (vi, vj) ∈ E

Definition 7. Suppose G =< V, E > is a simple directed graph and |V | = n, and
M1 = (M1

ij)n×n is L-adjacency-matrix representation of G. Let M = (Mij)n×n,

where Mij =
{

∅ , M1
ij = ∅

{j}, otherwise
Then Mk = Mk−1 ∗ M(k = 2, 3, · · · , n) is the k-path matrix. If i0i1 · · · im ∈ Mk

ij,
then i0 = i, im = j, m = k and there is an edge sequence e1, · · · , ek such that
vi0e1vi1e2 · · · vik

is a simple path or a cycle in the graph G.
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ALGORITHM 2. procedure find unsatisfication
Q ← M1

for i=2 to n do
1. P ← Q; Q ← P ∗ M
2. for j=1 to n do

2.1 for every w ∈ Qjj do
2.1.1 tmpd ← 0; m ← |w| − 1; cur ← 0;
2.1.2 for l=1 to m do

2.1.2.1 tmpd ← tmpd + Adjwcurwl

2.1.2.2 cur ← l
2.1.3 if tmpd > 0 then raise an exception
2.1.4 for l=1 to m-1 do

2.1.4.1 if |Qwlwl
| = 1 then Qwlwl

= ∅

Proposition 2. Suppose the undirected graph G =< V, E >, |V | = n, |E| =
m(n ≤ m) and G has no self-loop. The number of circles is not more than
(m−n+1)(m−n+2)

2 .

This proposition can be obtained very easily by graph theory. In the algorithm
2, the operations are plus and search in nature, and the cost is in the joint of
two L-matrices. P ∗ M is O(n3). So the joint operation costs O(n4). The step
2 costs O((m − n)2) by proposition 2. In fact, the graph in this paper is a di-
rected one, so the number of loops is far less than (m−n+1)(m−n+2)

2 . Therefore,
the worst time of this algorithm is O(n4 +(m−n)2) ≈ O(n4). Although [18] gives
an O(mn2 log m) algorithm for TVPI system, it doesn’t discuss the time in com-
puting the set Bj(1 ≤ j ≤ d) of breakpoints of the edge (xi, xij ) projected on the
xi coordinate and the implementation of our algorithms is simpler than [17][18].

4 Experiment

We implement these algorithms in our tool SPVT which is written in Objective
Caml. This section will take Denning-Sacco protocol as an example for applying
this method in model and verification of time sensitive security protocols verifica-
tion. This protocol is described as Table 3.

Using ourπ-like calculus in section 2.1,Denning-Sacco protocol canbe described
as the following process DS:

Table 3. The formal description of Denning-Sacco protocol

① A→S: A, B
② S→A: {B, Kab, TA, {Kab, TA, A}Kbs}Kas
③ A→B: {Kab, TA, A}Kbs
④ B→A: {NB}Kab
⑤ A→B: {NB − 1}Kab
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processA�
Set d = d1 in c(xB).begin(Bparam,xB).c̄ < (host(Kas), xB) > .c(X).let {XB, XKab,
XT1, XT icket} = decrypt(X,Kas) in if xB=XB then Check(XT1).c̄ < XT icket >
.c(Y ).let XNB = decrypt(Y,XKab) in F ly(d1 + d2).c̄ < {XNB − 1}XKab >.0

processS�
c(XAB).if XAB = (x, y) then if x = host(Kxs) then if y = host(Kys) then Mark(T1).
c̄ < {y, Kab(T1), T1, {Kab(T1), T1, x}Kys}Kxs >.0

processB�
Set d = d1 + d2 in c(XTicket).let {XKab, XT1, xA} = decrypt(XTicket,Kbs) in
Check(XT1). (νNB)c̄<{NB(XT1)}XKab>.c(xBack). let xN =decrypt(xBack,Kbs)
in if xN = NB(XT1) − 1 then F ly(d1 + d2).end(Bparam,B).0

DS�
(νKas)(νKbs)c̄ < host(Kas) > .c̄ < host(Kbs)> .((!processA)|(!processS)|(!processB))

Based on the translation in Section 2.2, the logic program of Denning-Sacco
protocol can be derived as follows:

A:① → attacker(A) : true

② → attacker(B) : true

③ begin(· · · )∧attacker({B, XKab, XT 1, XT icket}Kas)→ attacker(XTicket):
now − d1 ≤ XT 1 ≤ now

④ begin(· · · )∧attacker({B, XKab, XT 1, XT icket}Kas)∧attacker({NB(t)}XKab)→
attacker({NB(t) − 1}XKab) : now − d1 − (d1 + d2) ≤ XT 1 ≤ now

S:⑤ attacker(x)∧attacker(y) →attacker({y, Kab(T 1), T 1, {Kab(T1), T1, x}Kys}Kxs:
T 1 = now

B:⑥ attacker({XKab, XT 1, xA}Kbs) → attacker({NB(XT 1)}XKab) : now −
d1 − d2 ≤ XT 1 ≤ now

⑦ attacker({XKab, XT 1, xA}Kbs)∧attacker({NB(XT 1)−1}XKab) → end(· · · ) :
now − 2(d1 + d2) ≤ XT 1 ≤ now

I:⑧ → attacker(Kab(t)) : now ≥ D + t

By the resolution in [1], we obtain an unsatisfiable constraints in Denning-Sacco
protocol: now−2(d1+d2) ≤ t1 ≤ now, t4 ≥ D+t1, t3−d1−d2 ≤ t1 ≤ t3, t2−d1 ≤
t1 ≤ t2 ≤ t3 ≤ t4, t5 ≥ D + t1, t5 ≥ t4. Now we take this constraints system into
account. Because D is a very big constant, we can suppose D > 10(d1 + d2). Let
the index of now be 0, and others’ are their subscripts. The adjacency-matrix is

Adj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⊥ 0 0 0 0 0
−2(d1 + d2) ⊥ −d1 −(d1 + d2) ⊥ ⊥

⊥ 0 ⊥ ⊥ ⊥ ⊥
⊥ 0 0 ⊥ ⊥ ⊥
⊥ D ⊥ 0 ⊥ ⊥
⊥ D ⊥ ⊥ 0 ⊥

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The L-matrices are presented as follows:

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

{} {01} {02} {03} {04} {05}
{10} {} {12} {13} {} {}
{} {21} {} {} {} {}
{} {31} {32} {} {} {}
{} {41} {} {43} {} {}
{} {51} {} {} {54} {}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

{} {1} {2} {3} {4} {5}
{0} {} {2} {3} {} {}
{} {1} {} {} {} {}
{} {1} {2} {} {} {}
{} {1} {} {3} {} {}
{} {1} {} {} {4} {}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

{010} {051, 041, 031, 021} {032, 012} {043, 013} {054} {}
{} {131, 121, 101} {132, 102} {103} {104} {105}

{210} {} {212} {213} {} {}
{310} {321} {312} {313} {} {}
{410} {431} {432, 412} {413} {} {}
{510} {541} {512} {543, 513} {} {}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can obtain M3
00 = {0210, 0310, 0410, 0510}. By the step 2.1 in algorithm 2,

when w = 0410, we have
∑

d = Adj04 + Adj41 + Adj10 = 0 + D − 2(d1 + d2) =
D − 2(d1 + d2) > 0. So, by theorem 3, the constraints system has no solution.

5 Conclusions

Security protocol analysis is a mature field of research that has produced numerous
findings andvaluable tools for the correct engineering of security protocols.Despite
much literature on time sensitive security protocols in constraints, most analysis
methods do not take constraints solution into consideration. This paper discusses
the constraints system in verification of time sensitive security protocols. Firstly,
we present ourmodels in security protocols, anddescribe time constraints in detail.
Secondly, byanalyzing the characteristic of our system,wegiveaneffective and sim-
ple method to determine whether or not our constraints system has a solution and
then implement it in our verification tool SPVT. This allows the verification of pro-
tocols thatuse timestamps to fulfil oneormoresecurityproperties.Withtheworkof
[13,14,1], we can verify security protocols with or without time critical features and
give a counter-example for an attack. The strength of the framework is that it will
also allow more complicated time-dependent behavior of the protocol to be mod-
eled naturally and verified effectively. The future work is to consider how to model
sophisticate protocols, such as Kerberos V, and verifying them by our tool SPVT.
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Abstract. Tree-based algorithms, such as Patricia, LC-trie, LPFST, etc, are 
widely used to do longest prefix matching (LPM). These algorithms use all the 
bits of the prefix to build the tree and the bits are used from the most significant 
bit to the least significant bit sequentially. Thus the tree is not balanced and the 
tree depth is high. In this paper, we propose bit selection tree (BS-tree) to do 
LPM. The bits of the prefix are selected to build BS-tree based on their costs 
defined in this paper. BS-tree has lower tree depth and is more balanced 
compared to other tree-based schemes. BS-tree has good scalability to the 
length of the IP address and is suitable for both IPv4 and IPv6.  We evaluate the 
performances of BS-tree using both IPv4 and IPv6, and specially refine it for 
IPv6 based on the observations on IPv6 address and real IPv6 routing tables.  

Keywords: Algorithm, Routing Table Lookup, Bit Selection, IPv4, IPv6.  

1   Introduction 

One of the most time-consuming and critical tasks in the data plane of a router is to do 
the longest prefix matching (LPM) to decide to which port the incoming packet 
should be forwarded. This is true for both IPv4 and IPv6 [1]. IPv6 is the next 
generation internet protocol. With 128-bit address, IPv6 provides an extremely huge 
address space, 3.4*1038 IPs in theory. Besides, IPv6 is expected to offer benefits for 
greater security, enhanced quality of service, better mobility, and new products, 
services, and missions for Next Generation Internet applications. Thus, IPv6 has been 
gaining wider acceptance to replace its predecessor, IPv4. IPv6 has already emerged 
out of the testing phase [2] and is seeing production deployment in Europe, Asia, and 
North America1. However, IPv6 does not change the data plane functions of the 
router. LPM is still needed. In fact, IPv6 with increased address length and very 
different prefix length distribution poses new challenges to the LPM algorithms. 
Major refinements to the LPM algorithms are necessary when they are applied to 
IPv6. LPM schemes that are suitable for both IPv4 and IPv6 are solicited. 

In this paper, we use bit selection tree (BS-tree) to do LPM. Cost is defined for 
each bit of the prefix and only those bits with low costs are selected to construct the 
BS-tree. BS-tree is more balanced and the depth of BS-tree is reduced compared with 
                                                           
1 http://www.ipv6forum.com 
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other tree-based schemes. Thus, BS-tree increases the worst case lookup performance. 
Besides, BS-tree supports incremental updates and is suitable for both IPv4 and IPv6. 

The rest of this paper is organized as follows. Section 2 presents the prior work 
and our contributions in this paper. The proposed algorithm is introduced in section 3. 
In section 4, we give the enhancements to the basic BS-tree. Section 5 shows the 
experimental and comparison results. Finally, the conclusion is drawn in section 6. 

2   Prior Work and Main Contribution 

In the past several years, LPM received great research interests and various 
algorithms for high performance LPM were proposed [3]. One direction to tackle this 
problem concentrates on partitioning routing tables in optimized tree-based data 
structures, such as Patricia [4], segment table [5], LC-trie [6], and tree bitmap [7]. 

Tree structure allows the organization of prefixes on a digital basis by using the bits 
of prefixes to direct the branching. Fig. 1 illustrates a binary tree representing the 
sample routing table shown in the right part. A prefix defines a path in the tree which 
is beginning from the root and ending in some node, the genuine node, in which the 
routing information, such as the next hop of the routing entry, is stored. The internal 
nodes that are not genuine nodes are called dummy nodes because there is no routing 
information stored in them. For example in Fig. 1, the genuine nodes are all labeled, 
and others are all dummy nodes. Prefix I with 1010* corresponds to the path starting 
from the root and ending in the leaf node I. An 8-bit IP address 10110001 has the 
longest prefix matching with the prefix 10110* (J) deriving from the two matching 
prefixes 10* (H) and 10110* (J). The worst case lookup performance of the tree-
based algorithm is inversely proportional to the depth of the tree. In the worst case the 
depth of the tree can be up to the length of the IP address, 32 for IPv4 and 128 for 
IPv6. The average lookup performance of the tree-based schemes is not only relevant 
to the depth of the tree, but also to the shape of the tree and the traffic pattern. Detail 
discussions are in [8]. 

A
B
C
D
E
F
G
H
I
J
K

Level prefix 
0*
00000*
000010*
0010*
0011*
0011010*
0011011*
10*
1010*
10110*
1011010*

5
3
4
1
3
4
2
5
2
3
1

next hoplabel

B

A

C

D

H

E I

J

K

root

GF

0

7
6
5

4

3

1

 

Fig. 1. A binary tree representing a sample routing table 

To speed up the worst case lookup performance of the tree-based schemes, some 
techniques have to be used to decrease the depth of the trie. In Patricia [4], path 
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compression is used to eliminate the one-degree dummy nodes. The segment table 
scheme [5] in essence is a fix-stride multi-bit trie algorithm. When searching in the 
multi-bit trie, each step more than one bit is inspected, thus the depth of the trie is 
reduced. The problem of the segment table scheme is that the stride, the number of 
bits to be inspected a time, is fixed other than determined by the characteristic of the 
specific routing table. Therefore it is not memory efficient. When it is upgraded to 
support IPv6 LPM, too massive memory is required to be affordable. LC-trie (Level 
Compressed trie) [6] overcomes the disadvantage of the segment table scheme. LC-
trie replaces a large full (or nearly full) binary subtrie with a multi-bit trie iteratively 
to reduce the depth of the trie and finally a memory efficient variable stride multi-bit 
trie is constructed. The big problem of LC-trie is that it is a static algorithm, i.e. it 
does not support incremental updates. When the routing table changes, LC-trie has to 
be reconstructed from scratch. To conquer this drawback, Eatherton et al presented 
tree bitmap in [7]. Tree bitmap avoids leaf pushing [9], thus incremental update is 
supported. 

In our opinion, these tree-based algorithms have three common drawbacks. First, all 
the bits of the prefix are used to build the tree. Thus, the depth of the tree is proportional 
to the length of the IP address. Second, the bits of the prefix are used from the most 
significant bit (MSB) to the least significant bit (LSB) in order. They are treated with no 
difference. Third, one and only one routing entry can be stored in the genuine node in 
the trie, which can result in increased memory consumption and prolonged lookup time. 

Longest prefix first search tree (LPFST) [10] is a new tree-based algorithm, which 
puts the routing entry with longer prefix on the upper level of the tree to make the 
searching procedure to stop immediately as matching with some internal node while 
performing IP lookup. Further, some nodes may store two routing entries to minimize 
the number of tree nodes. LPFST is suitable for both IPv4 and IPv6. But its 
performance is not evaluated using IPv6 in [10]. We do this work in this paper. 
Although not all the bits of the prefix are used to construct LPFST, the bits are still 
used from MSB to LSB sequentially. Thus, LPFST can be far from balanced. For 
example, the first three bits of IPv6 global unicast address are 001, thus, the root of 
the corresponding LPFST has only left child, and so does its left child, the second 
generation of root node has only right child. 

In this paper, we propose another tree-based LPM scheme, called BS-tree (Bit 
Selection tree). BS-tree has the following innovations. First, not all the bits of the 
prefix are used to construct the tree. Thus our scheme has good scalability to the 
length of the IP address. It is suitable for both IPv4 and IPv6. Second, the bits are not 
used from MSB to LSB sequentially. They are selected based on their costs defined in 
this paper. BS-tree is more balanced and the depth of BS-tree is reduced compared 
with other tree-based schemes. Third, all the routing entries are stored in the leaf 
nodes, and more than one entry can be stored in a leaf node, which is called leaf 
bucket. The size of the leaf bucket is determined by a tunable threshold, which is used 
to trade off between the memory requirement and lookup performance. Fourth, our 
scheme supports incremental updates. 

As far as the authors’ awareness, the idea of bit selection is used to solve the packet 
classification problem in [11]. We use it to do LPM in this paper with different bit 
selection criteria and discuss the incremental updates. Furthermore, the scheme is 
refined for both IPv4 and IPv6 based on some observations. 
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3   Bit Selection Algorithm 

3.1   Bit Selection Criteria 

The prefixes in the routing table can be viewed as an n*m matrix consisting of 0, 1, 
and *, where n is the number of routing entries in the routing table and m is the length 
of the IP address. Each bit of the prefixes in the routing table corresponds to a column 
in the matrix. For each column i in the matrix, we can count the number of 0, 1, and * 
in it, denoted by 0[ ]N i , 1[ ]N i , and *[ ]N i , respectively. We define the cost for 

column i as follows: 

 [ ] 0[ ] 1[ ] 2 * [ ]Cost i N i N i N i= − + ×   (1) 

To efficiently and effectively organize the routing table in a tree, we should try to 
eliminate as many entries as possible from further consideration in the smallest 
number of steps. The finally constructed tree should be as low as possible and should 
be as balanced as possible. The optimal BS-tree can be constructed using dynamic 
programming, which is computationally expensive. Thus, we define the following 
simple bit selection criteria: 

1) The bit with minimal cost is picked first; 
2) If more than one bit has the minimal cost, the more significant one is picked. 

Although BS-tree constructed using the simple bit selection criteria is not optimal 
because the procedure is only locally optimized at each step, it is suboptimal because 

0[ ] 1[ ]N i N i−  is used to control the balance of the tree and  2 *[ ]N i×  is used to 

control the memory explosion resulting from routing entry duplication. Please note 
that two times of the number of the * in a column is used to calculate the cost, 
because such entries will be copied to the left and the right child of a node in the tree. 

3.2   Node Structure and Leaf Bucket Organization 

Fig. 2 shows the structure of our tree node. The node is either an internal node or a 
leaf bucket. The routing entries are all stored in the leaf buckets. The internal node is 
only used to guide the lookup procedure to reach a leaf bucket. The bit position field 
is also used as a flag, 0 for leaf bucket and otherwise for internal node. Internal node 
uses the left and right pointers to point to its children. Leaf bucket only needs one 
pointer points to the list of the routing entries contained in it. So, we share the right 
field in the internal node with the bucket field in the leaf node. In this way, we save a 
pointer field. 

 

Fig. 2. The node structure 

The size of the leaf bucket is determined by a threshold, which is tunable to trade 
off between the memory consumption and the lookup performance. In practice, it is 
usually less than 128. So, simple approaches can be used to finish the lookup in the 
leaf bucket, such as linear search, binary search on prefix intervals [12], LPFST [10], 

right/bucketleftBitPosition
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or ternary content addressable memory (TCAM). We choose the specific approach 
based on the specific threshold. When bucket size is not greater than 8, we use linear 
search and sort the bucket descendingly by the prefix length. In consequence, the first 
matching entry in the bucket is the most specific one that matches the IP address 
under lookup. Otherwise, we use binary search on prefix intervals. TCAM is used for 
hardware implementation. 

3.3   BS-Tree Construction 

The pseudo code for the BS-tree construction is recursive. Each time it is called, a 
new node will be created (line 2). Then the number of the routing entries in the 
routing table (RT) is checked. If it is less than or equals to the threshold, we organize 
the entries in a leaf bucket according to the criteria discussed in the previous 
subsection (line 3-6). Otherwise, an internal node is needed. In this case, we first 
calculate the cost for each column according to (1) (line 7-12). Then bit k is selected 
based on the bit selection criteria to partition the RT into RT0 and RT1 (line 13-15). 
After that, RT0 and RT1 are used to invoke the construction code iteratively to build 
the left and right child for the node (line 17-18). 

1 node * constructBST(RT){ 
2   n = create a new node; 
3   if ||RT|| <= THRESHOLD { 
4     n.rightBKT =organizeBucket(RT); 
5     return n; 
6   } 
7   for i from 1 to m { 
8     0[ ]N i  = the number of 0 in column[i]; 
9     1[ ]N i  = the number of 1 in column[i]; 
10    * [ ]N i  = the number of * in column[i]; 
11    cost[i] = 0[ ] 1[ ] 2 * [ ]N i N i N i− + × ; 
12  } 
13  k = the column that has minimal cost; 
14  RT0 = the entries whose kth bit is 0 or *; 
15  RT1 = the entries whose kth bit is 1 or *; 
16  n.BitPosition = k; 
17  n.left = constructBST(RT0); 
18  n.rightBKT = constructBST(RT1); 
19  return n; 
20} 

Fig.3 illustrates the procedure to construct the BS-tree for the sample routing table 
depicted in Fig.1. The threshold is 4. In step 1, bit 1 is selected and stored in the root 
node because it has the minimal cost, 3. Then the left child of the root node 
containing routing entry A, B, C, D, E, F, and G, is processed. Because the number of 
entries covered by this node is greater than the threshold, costs are calculated and bit 
4 is picked to partition the entries (step2). Following, two leaf buckets are created for 
the left and right child of the prior node respectively because the number of entries in 
the leaf buckets equals to the threshold (step 3). Finally, in step 4, a leaf bucket 
including entry H, I, J, and K is created for the right child of the root node. 
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Fig. 3. A sample construction procedure of BS-tree 

3.4   BS-Tree Lookup 

Given the BS-tree data structure, the search procedure is straightforward. BS-tree is 
traversed based on the bit position stored in the internal node until a leaf bucket is 
identified (whose bit position is 0). Then the leaf bucket is searched according to its 
organization to locate the matching entry with the longest prefix. 

1 nexthop lookupBST(root, addr){ 
2   node *pn = root; 
3   while (pn->BitPosition){/* internal node */ 
4     if (the pn->BitPosition bit of addr is 0) 
5       pn = pn->left; 
6     else 
7       pn = pn->rightBKT; 
8   } 
9   return lookupBucket(pn->rightBKT, addr); 
10} 

3.5   BS-Tree Update 

The proposed BS-tree can be quickly updated without being reconstructed from 
scratch when the routing table is changed. The following pseudo code is for route 
insertion. Route deletion and modification have similar procedure. 

1 void insertBST(root, p){ 
2   if (root->BitPosition){/* internal node */ 
3     if (p->length < root->BitPosition) { 
4       insertBST(root->left, p); 
5       insertBST(root->rightBKT, p); 
6     } 
7     else { 
8       if (the root->BitPosition bit of p is 0) 
9         insertBST(root->left, p); 
10     else 
11       insertBST(root->rightBKT, p); 
12    } 
13  } 
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14  else 
15    insertBucket(root->rightBKT, p); 
16} 

4   Refinements 

4.1   Refinements for IPv4 

There is no routing entry with prefix length less than eight in the IPv4 routing tables. 
So, we use the first 8 bits to partition the routing entries into several groups and build 
a BS-tree for each group. This enhanced scheme is called MBS-tree (Multiple BS-
tree). Because the height of MBS-tree is reduced, its lookup performance is increased, 
which we can see from the evaluation results shown in Section 5. Fig. 4 illustrates the 
main idea of the MBS-tree. A table is used to record the associated next-hop or BS-
tree. The routing entries with the same first 8 bits are stored in the same BS-tree. 
 

Fig. 4. The main idea of multiple BS-tree 

4.2   Observations on IPv6 

1) The structure of IPv6 address: The latest format of IPv6 global unicast address 
defined in RFC3587 has 3 parts (see Fig. 5): 45-bit global routing prefix (4-48th bits, 
the first three bits are ‘001’), 16-bit subnet ID (49-64th bits), and 64-bit interface ID 
(65-128th bits) in Modified EUI-64 format. Usually, only the global routing prefix and 
the subnet ID, totally accounting for 64 bits, are used for routing. 

3 45 bits 16 bits 64 bits 
001 global routing prefix subnet ID interface ID 

Fig. 5. The format of IPv6 global unicast address 

2) The policies for IPv6 address allocation & assignment: The guidelines for IPv6 
address assignment to a site defined in RFC3177 are as follows: /48 in the general 
case, except for very large subscribers; /64 when it is known that one and only one 
subnet is needed by design; /128 when it is absolutely known that one and only one 
device is connecting. IANA (the Internet Assigned Numbers Authority) issued the 
memo titled “IPv6 Address Allocation and Assignment Policy”2 on June 26, 2002 to 
govern the distribution of IPv6 address space. In consequence, RIRs (Regional 
Internet Registries) jointly published the document with the same title on January 22, 

                                                           
2 http://www.iana.org/ipaddress/ipv6-allocation-policy-26jun02 
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2003 to define registry policies for the assignment and allocation of globally unique 
IPv6 addresses to Internet Service Providers and other organizations3. One of their 
goals is to distribute IPv6 address space in a hierarchical manner according to the 
topology of network infrastructure so as to permit the aggregation of routing 
information by ISPs, and to limit the expansion of Internet routing tables. Address 
allocation hierarchy is shown in Fig.6. IANA, the top level of the hierarchy, allocates 
/23 from 2000::/3 to the RIRs. RIRs in turn allocate /32 to subordinate address 
agencies, ISPs or LIRs (Local Internet Registries). The bottom level of the hierarchy, 
EUs (End Users), are generally given /48, /64, or /128 according to RFC3177. 

IANA

NIR

ISP/LIR

EU(ISP) EU

RIR RIR

National Internet Registries (APNIC Region )

ISP/LIR

EU

Regional Internet Registries

Internet Assigned Numbers Authority

Internet Service Provider / Local Internet Registries

End Users
 

Fig. 6. Address allocation hierarchy 

3) Characteristics of real IPv6 backbone routing tables: We collected 6 IPv6 BGP 
routing tables from the backbone network on July 3, 2006. Four of them are from four 
different peers (Vatican, United Kingdom, USA, and Japan) in the RouteViews 
project4 and the other two are from Tilab5 and Potaroo6 respectively. The prefix length 
distribution is listed in Table 1, from which we can see that: 1) the number of route 
entries in a routing table is less than 1000 now; 2) most of the prefix lengths are less 
than 64 bits (only 1 exception in Japan table with 128 bits); 3) there is no routing 
entry with prefix length less than 16 (The length 0 route in Japan table is the default 
route); 4) the entries peak at prefix lengths of 32, 35, and 48, the bolded rows in the 
table. Routing entries with length less than 33 amount to 80% of the total entries.  

The characteristics of the real IPv6 backbone routing tables reflect the IPv6 address 
structure and the policies for IPv6 address allocation and assignment. 

4.3   Refinements for IPv6 

The observations can be used to enhance the performance of the BS-tree when it is 
applied to do IPv6 LPM. 

1) Because there is no routing entry with prefix length less than 16 and the number 
of distinct values of the first 16 bits in a routing table is no more than 10 (The 
statistic results are omitted duo to space limitation), we use the first 16 bits to  

                                                           
3 http://www.ripe.net/ripe/docs/ripe-267.html 
4 http://www.routeviews.org/ 
5 http://net-stats.ipv6.tilab.com/bgp/bgp-table-snapshot.txt 
6 http://bgp.potaroo.net/v6/as1221/bgptable.txt 
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Table 1. Prefix Length Distributions of real IPv6 backbone routing tables 

 Tilab Potaroo VA UK USA Japan 

0 0 0 0 0 0 1 
16 0 1 1 1 1 1 
19 1 1 1 1 1 1 
20 3 3 3 3 3 3 
21 2 2 2 2 2 2 
24 5 4 0 0 4 4 
27 1 1 1 1 1 1 
28 2 2 2 1 3 4 
29 1 1 1 1 1 1 
30 1 2 1 1 1 1 
32 514 526 515 513 516 508 
33 5 5 5 5 5 5 
34 5 5 5 5 5 5 
35 31 33 31 31 31 31 
39 0 1 1 0 1 0 
40 3 15 8 6 8 3 
42 0 10 1 1 1 0 
45 1 1 1 1 1 0 
48 50 76 66 71 66 18 
64 6 0 6 2 0 5 

128 0 0 0 0 0 1 

partition the routing entries into several groups and construct a small BS-tree for 
each group. The depth of such small BS-tree is reduced, and the overall lookup 
performance of our scheme is improved. 

2) We only calculate the costs for the 17th-48th bits and only use these 32 bits to 
construct the BS-tree, because very few routing entries with prefix length more 
than 48. N*[j], 49<=j<=128, is very large, thus bit 49-128 should not be selected 
to build the BS-tree. This improvement has two advantages. First, it greatly 
reduces the task to calculate the costs. Thus it significantly speeds up the initial 
construction of the BS-tree. Second, we need only 32 bits of the destination IPv6 
address to traverse the BS-tree. This facilitates the lookup procedure, because 
128-bit IPv6 address has to be organized with a structure and to fetch a specific 
bit from a 128-bit number is not convenient on a 32-bit machine.  

The improved BS-tree for IPv6 LPM, also called MBS-tree (Multiple BS-tree), is 
illustrated in Fig. 7. With MBS-Tree, at the beginning of the lookup, the first 16 bits 
of the IPv6 address are used to choose an appropriate BS-tree to start the traverse 
using the following 32 bits of the IPv6 address. 

5   Performance Evaluation and Comparison 

In the section we present the evaluation and comparison results. We do the 
evaluations using both real routing tables and synthetically created IPv6 routing 
tables. The synthetically created IPv6 routing tables with different sizes are generated  
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Fig. 7. The improved BS-tree for IPv6 longest prefix matching 

to test the scalability of our scheme because the current IPv6 routing tables are small. 
Our test application measures the average lookup time using generated IPs. For each 
test run, we generate one million IP addresses, 80% of which are generated based on 
the routing entries randomly selected from the corresponding routing table, others are 
generated purely randomly. 

All the tests are done on a PC with one Pentium 4 2.4 GHz CPU, 512M DDR333 
memory, and Linux OS. The sample implementations are all written in C language. 

Due to page limitation, we can only present some of the evaluation results in this 
paper. Table 2 shows the comparison results using the rrc00 IPv4 routing table7 collected 
on Sep. 1, 2006. From Table 2, we can see that BS-tree has the lowest tree depth (14 for 
basic BS-tree and 9 for MBS-tree), thus BS-tree is the best for the worst case lookup time. 

Table 2. Comparison results for IPv4 using rrc00 with 198687 entries 

 Patricia LC-trie* LPFST BS-tree # MBS-tree # 

Tree depth 30 15 31 14 9 
Memory(MB) 7.40 4.32 4.54 7.46 6.96 

Total node 369895 279955 189053 10173 9483 
1-degree node 7478 NA 48232 0 0 
2-degree node 181208 NA 70410 5086 4667 

Leaf node 181209 181209 70411 5087 4816 
Building (s) 0.142 0.25 0.114 0.562 1.59 

AVG time(ns) 896 510 651 905 728 
*fill factor = 1.0, root branch = 0. 
#bucket size = 64, bucket organized in binary search on prefix interval. 

The evaluation results using the Potaroo IPv6 routing table collected on Sep. 10, 
2006 are listed in Table 3, which shows that BS-tree has the best lookup time in both 
worst case and average case. The memory consumption of BS-tree is relatively large. 
In fact, most of the memories are consumed by the leaf buckets which are organized 
as binary search on prefix interval [12]. The memories occupied by BS-tree itself are 
small, which we can derive from the number of nodes in the BS-tree. 

To test the scalability of our scheme and its adaptability to the future IPv6 
network, we synthetically creates several IPv6 routing tables with different sizes by 
v6Gen [13] and use them to do the experiments. The prefix length distribution of the 
 

                                                           
7 http://www.ripe.net/projects/ris/ 
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Table 3. Comparison results for IPv6 using potaroo with 815 entries 

 Patricia LPFST BS-tree# MBS-tree# 

Tree depth 30 44 6 6 
Memory(KB) 43.8 29.0 53.3 47.6 

Total node 1563 806 35 43 
1-degree node 40 297 0 0 
2-degree node 761 254 17 17 

Leaf node 762 255 18 26 
Building (ms) 1.32 0.54 2.53 1.53 
AVG time(ns) 375 291 201 174 

# bucket size = 64, bucket organized in binary search on prefix interval. 

IPv6 routing table with 100K routing entries is depicted in Fig. 8. Other generated IPv6 
routing tables with different sizes have the similar prefix length distribution. The size of 
the current backbone IPv4 routing table is about 200K. So, we display the comparison 
results using synthesized IPv6 routing table with 200K routing entries in Table 4. We 
can see that BS-tree has the best lookup time in both worst and average case. Under our 
test circumstance, BS-tree can complete almost one million IPv6 LPM in one second 
even when the number of entries in the routing table reaches 200K. 
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Fig. 8. Prefix length distribution of the synthesized IPv6 routing table with 100K entries 

Table 4. Comparison results for IPv6 using v6gen with 200k entries 

 Patricia LPFST BS-tree# MBS-tree# 

Tree depth 44 58 20 19 
Memory(MB) 10.8 7.01 22.6 19.9 

Total node 386885 194819 20139 18271 
1-degree node 4396 51288 0 0 
2-degree node 191244 71765 10069 9134 

Leaf node 191245 71766 10070 9137 
Building (s) 0.74 0.20 3.92 2.35 

AVG time(us) 1.34 1.30 1.18 1.04 
# bucket size = 64, bucket organized in binary search on prefix interval. 
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6   Conclusion 

In this paper, we propose bit selection tree (BS-tree) to do longest prefix matching (LPM) 
for both IPv4 and IPv6. Only the bits with low costs are selected to build the tree. Both the 
balance and the depth of the tree are controlled by the bit selection criteria. The evaluation 
results show BS-tree has the best worst case lookup performance. 

IPv6 has been gaining wider acceptance to replace IPv4 and IPv6 production 
deployment has been seeing in Europe, Asia, and North America. Therefore, we 
specially refine BS-tree for IPv6 LPM based on the observations on the IPv6 
addressing architecture, the IPv6 address allocation policies, and the real IPv6 
backbone routing tables. Furthermore, its performance is evaluated with real IPv6 
routing tables and synthetically created large IPv6 routing tables. For IPv6, BS-tree 
has the best lookup performance in both average case and worst case. The sample 
software implementation of BS-tree only needs several tens of kilobytes memory for 
the current real IPv6 backbone routing tables and can achieve 6 million lookups per 
second (3.8Gbps for 80-byte minimal IPv6 packet) on a PC with one Pentium 4 
2.4GHz CPU, 512M DDR333 memory, and Linux operating system. 
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Abstract. Decision tree construction is a well-studied problem in data mining. 
Recently, there has been much interest in mining data streams. Domingos and 
Hulten have presented a one-pass algorithm for decision tree constructions. 
Their system using Hoeffding inequality to achieve a probabilistic bound on the 
accuracy of the tree constructed. Gama et al. have extended VFDT in two 
directions. Their system VFDTc can deal with continuous data and use more 
powerful classification techniques at tree leaves. Peng et al. present soft 
discretization method to solve continuous attributes in data mining. In this 
paper, we revisit these problems and implemented a system sVFDT for data 
stream mining. We make the following contributions: 1) we present a binary 
search trees (BST) approach for efficiently handling continuous attributes. Its 
processing time for values inserting is O(nlogn), while VFDT`s processing time 
is O(n2). 2) We improve the method of getting the best split-test point of a given 
continuous attribute. Comparing to the method used in VFDTc, it decreases 
from O(nlogn) to O (n) in processing time. 3) Comparing to VFDTc, sVFDT`s 
candidate split-test number decrease from O(n) to O(logn).4)Improve the soft 
discretization method to increase classification accuracy in data stream mining. 

Keywords: Data Streams, Fuzzy, VFDT, Continuous Attribute, Binary Search 
Tree. 

1   Introduction 

Decision trees are one of the most used classification techniques for data mining. Its 
induction offers a highly practical method for generalizing from instances whose class 
membership is known. The most common approach to induce a decision tree is to 
partition the labeled instances recursively until a stopping criterion is met. The 
partition is defined by way of selecting a test that has a manageable set of outcomes, 

                                                           
* This work was supported by the National Science Foundation of China under Grants No. 

60573057, 60473057 and 90604007. 
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creating a branch for each possible outcome, passing each instance down the 
corresponding branch, and treating each block of the partition as a subprbolem, for 
which a subtree is built recursively[20]. 

Continuous data stream poses new problems to traditional classification methods of 
data mining. The common approach of the traditional methods is to store and process 
the entire set of training examples. The growing amounts of training data increase the 
processing requirements of data mining systems up to a point, where they either run 
out of memory, or their computation time becomes prohibitively long. The key issue 
of data stream mining is that only one pass is allowed over the entire data. Moreover, 
there is a real-time constraint, i.e. the processing time is limited by the rate of arrival 
of instances in the data stream, and the memory and disk available to store any 
summary information may be bounded. For most data mining problems, a one-pass 
algorithm cannot be very accurate. The existing algorithms typically achieve either a 
deterministic bound on the accuracy or a probabilistic bound [21, 23].  

Domingos and Hulten [2, 6] have addressed the problem of decision tree 
construction on data streams. Their algorithm guarantees a probabilistic bound on the 
accuracy of the decision tree that is constructed. Gama et al. [5] have extended VFDT 
in two directions: the ability to deal with continuous data and the use of more 
powerful classification techniques at tree leaves. Wang et al. [28,29] use binary search 
trees to handle continuous attributes based on top of VFDT and VFDTc. 

Peng et al.[30]propose the soft discretization method in traditional data mining 
field, it solves the problem of noise data and improve the classification accuracy. 

The rest of the paper is organized as follows. Section 2 describes the related works 
that is the basis for this paper. Section 3 presents the technical details of sVFDT. The 
system has been implemented and evaluated, and experimental evaluation is done in 
Section 4. Last section concludes the paper, resuming the main contributions of this 
work. 

2   Related Work 

In this section we analyze the related works that our sVFDT bases on. 

2.1   VFDT 

VFDT(Very Fast Decision Tree) system[2], which is able to learn from abundant data 
within practical time and memory constraints. In VFDT a decision tree is learned by 
recursively replacing leaves with decision nodes. Each leaf stores the sufficient 
statistics about attribute-values. The sufficient statistics are those needed by a 
heuristic evaluation function that evaluates the merit of split-tests based on attribute-
values. When an example is available, it traverses the tree from the root to a leaf, 
evaluating the appropriate attribute at each node, and following the branch 
corresponding to the attribute's value in the example. When the example reaches a 
leaf, the sufficient statistics are updated. Then, each possible condition based on 
attribute-values is evaluated. If there is enough statistical support in favor of one test 
over the others, the leaf is changed to a decision node. The new decision node will 
have as many descendant leaves as the number of possible values for the chosen 
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attribute (therefore this tree is not necessarily binary). The decision nodes only 
maintain the information about the split-test installed in this node. The initial state of 
the tree consists of a single leaf: the root of the tree. The heuristic evaluation function 
is the Information Gain (denoted by G(﹒). The sufficient statistics for estimating the 
merit of a discrete attribute are the counts nijk, representing the number of examples of 
class k that reach the leaf, where the attribute j takes the value i. The Information Gain 
measures the amount of information that is necessary to classify an example that 
reach the node: G(Aj)=info(examples)-info(Aj). The information of the attribute j is 

given by: inf ( ) ( log( ))j i ik iki k
o A P P P= −∑ ∑  where ik ijk ajka

P n n= ∑ , is 

the probability of observing the value of the attribute i given class k and 

i ija ajba a b
P n n=∑ ∑ ∑ is the probabilities of observing the value of attribute i.  

As mentioned in Catlett and others [23], that it may be sufficient to use a small 
sample of the available examples when choosing the split attribute at any given node. 
To determine the number of examples needed for each decision, VFDT uses a 
statistical result known as Hoeffding bounds or additive Chernoff bounds. After n 
independent observations of a real-valued random variable r with range R, the 
Hoeffding bound ensures that, with confidence 1-δ, the true mean of r is at least 

r ε− , where r is the observed mean of samples and 
2 ln (1 / )

2

R

n

δε = . This is 

true irrespective of the probability distribution that generated the observations. 
Let G(﹒) be the evaluation function of an attribute. For the information gain, the 

range R, of G(﹒) is log2 #classes. Let xa be the attribute with the highest G(﹒), xb the 

attribute with second-highest G(﹒) and ( ) ( )a bG G x G xΔ = − , the difference 

between the two better attributes. Then if G εΔ >  with n examples observed in the 
leaf, the Hoeffding bound states with probability 1-δ that xa is really the attribute with 
highest value in the evaluation function. In this case the leaf must be transformed into 
a decision node that splits on xa.  

For continuous attribute, whenever VFDT starts a new leaf, it collects up to M 
distinct values for each continuous attribute from the first examples that arrive at it. 
These are maintained in sorted order as they arrive, and a candidate test threshold is 
maintained midway between adjacent values with different classes, as in the 
traditional method. Once VFDT has M values for an attribute, it stops adding new 
candidate thresholds and uses additional data only to evaluate the existing ones. Every 
leaf uses a different value of M, based on its level in the tree and the amount of RAM 
available when it is started. For example, M can be very large when choosing the split 
for the root of the tree, but must be very small once there is a large partially induced 
tree, and many leaves are competing for limited memory resources. Notice that even 
when M is very large (and especially when it is small) VFDT may miss the locally 
optimal split point. This is not a serious problem here for two reasons. First, if data is 
an independent, identically distributed sample, VFDT should end up with a value near 
(or an empirical gain close to) the correct one simply by chance. And second, VFDT 
will be learning very large trees from massive data streams and can correct early 
mistakes later in the learning process by adding additional splits to the tree. 
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Thinking of each continuous attribute, we will find that the processing time for the 
insertion of new examples is O (n2), where n represents the number of distinct values 
for the attribute seen so far.  

2.2   VFDTc 

VFDTc is implemented on top of VFDT, and it extends VFDT in two directions: the 
ability to deal with continuous attributes and the use of more powerful classification 
techniques at tree leaves. Here, we just focus on the handling of continuous attributes. 

In VFDTc a decision node that contains a split-test based on a continuous attribute 
has two descendant branches. The split-test is a condition of the form attribj≤ T. The 
two descendant branches correspond to the values TRUE and FALSE for the split-test. 
The cut point is chosen from all the possible observed values for that attribute. In 
order to evaluate the goodness of a split, it needs to compute the class distribution of 
the examples at which the attribute-value is less than or greater than the cut point. The 
counts nijk are fundamental for computing all necessary statistics. They are kept with 
the use of the following data structure: In each leaf of the decision tree it maintains a 
vector of the classes’ distribution of the examples that reach this leaf. For each 
continuous attribute j, the system maintains a binary attribute tree structure. A node in 
the binary tree is identified with a value i(that is the value of the attribute j seen in an 
example), and two vectors (of dimension k) used to count the values that go through 
that node. Two vectors, VE and VH contain the counts of values respectively 

i≤ and i>  for the examples labeled with class k. When an example reaches leaf, all 
the binary trees are updated. In [5], an algorithm of inserting a value in the binary tree 
is presented. Insertion of a new value in this structure is O(nlogn) where n represents 
the number of distinct values for the attribute seen so far.  

To obtain the Information Gain of a given attribute, VFDTc uses an exhaustive 
method to evaluate the merit of all possible cut points. Here, any value observed in 
the examples seen so far can be used as cut point. For each possible one, the 
information of the two partitions is computed using equation 1. 

 

inf ( ( )) ( ) *  ( ( )) ( ) *  ( ( )) j j j j jo A i P A i iLow A i P A i i High A i= ≤ + >   (1) 

Where i is the cut point, iLow(Aj(i)) the information of Aj≤ i (equation 2) and 

iHigh(Aj(i)) the information of Aj> i (equation 3). 

j
K

( ( )) ( | ) * log(P(K=k|A i))  j jiLow A i P K k A i= − = ≤ ≤∑                 (2) 

   j
K

( ( )) ( | ) * log(P(K=k|A >i))   j jiHigh A i P K k A i= − = >∑               (3) 

VFDTc only considers a possible cut_point if and only if the number of examples 
in each of subsets is higher than Pmin

 
(a user defined constant) percentage of the total 

number of examples seen in the node. [5] Presents the algorithm to compute #(Aj≤ i) 
for a given attribute j and class k. The algorithm’s processing time is O(logn), so the  
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best split-test point calculating time is O(nlogn). Here, n represents the number of 
distinct values for the attribute seen so far at that leaf.  

2.3   Soft Discretization 

Soft discretization could be viewed as an extension of hard discretization, and the 
classical information measures defined in the probability domain have been extended 
to new definitions in the possibility domain based on fuzzy set theory [13]. A crisp set 
Ac is expressed with a sharp characterization function ( ) : {0,1}:cA a a , 
alternatively a fuzzy set A is characterized with a membership 

function ( ) : [0,1] :A a a .  The membership A(a)is called the possibility 

of A to take a value a∈Ω[14]. The probability of fuzzy set A is defined, according 

to Zadeh [15], by, ( ) ( )FP A A a dP , where dP is a probability measure on Ω, 

and the subscript F is used to denote the associated fuzzy terms. Specially, if A is 
defined on discrete domain Ω={a1,.. ai,..., am}, and the probability of P(ai)= Pi 

then its probability is i
1

( ) ( )m
F i

i
P A A a p . 

Let Q={A1,...,Ak}be a family of fuzzy sets on Ω. Q is called a fuzzy partition 

of Ω [16] when 1
( ) 1,k
r

r
A a a .  

A hard discretization is defined with a threshold T, which generates the boundary 
between two crisp sets. Alternatively, a soft discretization is defined by a fuzzy set 
pair which forms a fuzzy partition. In contrast to the classical method of non-
overlapping partitioning, the soft discretization is overlapped. The soft discretization 
is defined with three parameters/functions, one is the cross point T, the other two are 
the membership functions of the fuzzy set pair A1

 
and A2: A1(a)+A2(a)=1. The cross 

point T, i.e. the localization of soft discretization, is determined based on whether it 
can maximize the information gain in classification, and the membership functions of 
the fuzzy set pair are determined according to the characteristics of attribute data, 
such as the uncertainty of the associated attribute.  

3   Technique Details 

Improving soft discretization method, we implement a system named sVFDT on top 
of VFDT and VFDTc. It handles continuous attributes based on binary search trees, 
and uses a more efficient best split-test point calculating method.  

3.1   sVFDT Framework 

[2] lists the details of the Hoffding tree algorithm just for processing discrete 
attributes. Although sVFDT bases on the top of VFDT and VFDTc, its framework is 
much different. For the reason of simplicity, we just list the detail framework of 
sVFDT for handling continuous attributes in Table 1. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 A New Fuzzy Decision Tree Classification Method 221 

Table 1. The framework of sVFDT 

Inputs:      D         is a sequence of examples, 
X         is a set of continuous attributes, 
G (.)     is a split evaluation function, 
δ     is one minus the desired probability of choosing the correct attributes at  

any given node. 
Output:         SDT is a soft decision tree. 
Procedure SDT (D, X, G, δ) 

Let SDT be a tree just with root r 
Let X1 = X∪{XØ} 
Let 1 ( )G X ∅

 be the G  obtained by predicting the most frequent class in D. 
For each continuous attribute Xi∈X builds an empty binary search tree BSTi. 
For each example (x, ck) in D 

           Sort (x, ck) into a leaf l using SDT. 
           Inserts the example values into each BSTi of leaf l using the inserting algorithm 

in Figure 1. 
           Compute ( )l iG X of all possible split point for each attribute Xi using its 

corresponding BST as represented in Figure 2. 
           Replace l by an internal decision node splits on the best split-point basing on 

VFDT`s theory and soft discretization method. 
Return SDT 

 

3.2   Updates the Binary Search Binary Tree When New Examples Arrives 

One of the key problems in decision tree construction on streaming data is that the 
memory and computational cost of storing and processing the information required to 
obtain the best split gain can be very high. For discrete attributes, the number of 
distinct values is typically small, and therefore, the class histogram does not require 
much memory. Similarly, searching for the best split predicate is not expensive if 
number of candidate split conditions is relatively small. 

However, for continuous attributes with a large number of distinct values, both 
memory and computational costs can be very high. Many of the existing approaches 
for scalable, but multi-pass, decision tree construction requires a preprocessing phase 
in which attribute value lists for continuous attributes are sorted [20]. Preprocessing 
of data, in comparison, is not an option with streaming datasets, and sorting during 
execution can be very expensive. Domingos and Hulten [2] have described and 
evaluated their one-pass algorithm focusing only on discrete attributes, and in later 
version they uses sorted array to handle continuous attribute. This implies a very high 
memory and computational overhead for inserting new examples and determining the 
best split point for a continuous attribute. 

Our sVFDT manages a binary search tree for each continuous attribute. The 
binary search tree data structure will benefit the process of inserting new example and 
getting the best split point. For each continuous attribute i, the system maintains a 
binary search tree structure. A node in the binary search tree is identified with a value 
keyValue (that is the value of the attribute i seen in the example)，and a vector( of 
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dimension k) used to count the values that go through that node. This vector 
classTotals[k] contains the counts of examples which value is keyValue and class 
labeled with k. A node manages left and right pointers for its left and right child, 
where its left child corresponds to ≤keyValue, while its right child corresponds to 
>keyValue. To get the best split point, each continuous attribute manages a head 
pointer. 

In sVFDT a Hoeffding tree node manages a binary search tree for each 
continuous attribute before it becomes a decision node.  

 
Procedure InsertValueBSTTree(x, k, BSTTree) 
Begin 
while (BSTTree ->right != NULL || BSTTree ->left != NULL ) 

    if (BSTTree ->keyValue = = x )    then  break; 
    Elseif (BSTTree ->keyValue > x )  then BSTTree = BSTTree ->left;  
    else BSTTree = BSTTree ->right; 
 Creates a new node curr based on x and k; 
If ( BSTTree.keyValue = = x )    then   BSTTree.classTotals[k]++; 

 Elesif (BSTTree.keyValue > x)   then   BSTTree.left = curr; 
 else          BSTTree.right = curr; 
 Threads the tree ;( The details of threading is in figure2) 

End 
 
  

Fig. 1. Algorithm to insert value x of an example labeled with class k into a binary search tree 
corresponding to the continuous attribute i 

In the induction of decision trees from continuous-valued data, a suitable 

threshold T, which discretizes the continuous attribute i into two intervals atrrj ≤ T 
and atrr i > T, is determined based on the classification information gain generated by 
the corresponding discretization. Given a threshold, the test atrrj ≤ T is assigned to 
the left branch of the decision node while atrr i > T is assigned to the right branch. As 
a new example (x,c) arrives, the binary search tree corresponding to the continuous 
attribute i is updated as Figure1. In [5], when a new example arrives, O(logn) binary 
search tree nodes need be updated, but sVFDT just need update a necessary node 
here. 

VFDT will cost O(n2), and our system sVFDT will just cost O(nlogn) (as 
presented in Figure 1)in execution time for values inserting, where n represents the 
number of distinct values for the given attribute seen so far. 

3.3   Soft Discretization for Continuous Attributes 

Taking advantage of binary search tree, we use a more efficient method to obtain the 
fuzzy information gain of a given attribute.  

Assuming we are to select an attribute for a node having a set S of N examples 
arrived, these examples are managed by a binary tree according to the values of the 
continuous attribute i ; and an ordered sequence of distinct values a1, a2 … an is 
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formed. Every pair of adjacent data points suggests a potential threshold T= 
(ai+ai+1)/2 to create a split test point and generate a corresponding partition of 
attribute i. In order to calculate the goodness of a split, we need to compute the class 
distribution of the examples at which the attribute value is less than or greater than 
threshold T. The counts BSTTree.classTotals[k] are fundamental for computing all 
necessary statistics.  

As we know, inorder traversal of a binary search tree will produce a list of sorted 
values, so we take the advantage of this property to make best split-point selecting 
more efficient. As presented in Figure 2, traversing from the root pointer, we can 
easily compute the fuzzy information of all the potential thresholds. sVFDT implies 
soft discretization by managing Max/Min value and example numbers. 

 
      Procedure BSTInorderAttributeSplit(BSTtreePtr ptr,int *belowPrev[]) 

      BSTInorderAttributeSplit( ptr->next,int *belowPrev[]); 
       For ( k = 0 ; k < count ; k++)  

*belowPrev[k] += ptr->classTotals[k]; 
            Calculates the information gain using *belowPrev[]; 

       BSTInorderAttributeSplit( ptr->next,int *belowPrev[]); 
  

Fig. 2. Algorithm to compute the information gain of each possible split point 

Here, VFDTc will cost O(nlogn) , and our system sVFDT will just cost O(n) in 
processing time, where n represents the number of distinct values for the given 
continuous attribute seen so far. 

3.4   Classify a New Example 

The classification for a given unknown object is obtained from the matching degrees 
of the object to each node from root to leaf. The possibility of an object belonging to 
class Ci is calculated by a fuzzy product operation ⊗  . In the same way, the 

possibility of the object belonging to each class can be calculated, 1 ...{ }i i k=Π . If 

more than one leaf are associated with a same class Ci, say, the value of 
( )i jΠ = ⊕ Π  will be considered as the possibility of the corresponding class, where 

the maximum operation is used as the fuzzy sum operation ⊕  In the end, if one 
possibility value, such as kΠ , is much higher than others, that is ...k i kΠ >> Π , then 
the class will be assigned as the class of the object, otherwise the decision tree 
predicts a distribution over all the classes.  

4   Evaluation 

In this section we empirically evaluate sVFDT. The main goal of this section is to 
provide evidence that the use of binary search tree decreases the processing time of 
VFDT, while keeps the same error rate and tree size. The soft discretization method 
will increase accuracy for the reason that it can solve the problem of noise data.  
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We first describe the data streams used for our experiments. We use a tool named 
treeData mentioned in [2] to create synthetic data .It creates a synthetic data set by 
sampling from a randomly generated decision tree. They were created by randomly 
generating decision trees and then using these trees to assign classes to randomly 
generated examples. It produced the random decision trees as follows. Starting from a tree 
with a single leaf node (the root) it repeatedly replaced leaf nodes with nodes that tested a 
randomly selected attribute which had not yet been tested on the path from the root of the 
tree to that selected leaf. After the first three levels of the tree each selected leaf had a 
probability of f of being pre-pruned instead of replaced by a split (and thus of remaining a 
leaf in the final tree). Additionally, any branch that reached a depth of 18 was pruned at 
that depth. Whenever a leaf was pruned it was randomly (with uniform probability) 
assigned a class label. A tree was completed as soon as all of its leaves were pruned.  

VFDTc`s goal is to show that using stronger classification strategies at tree leaves 
will improve classifier’s performance. With respect to the processing time, the use of 
naïve Bayes classifier will introduce an overhead [5], VFDTc is slower than VFDT. 
In order to compare the VFDTc and sVFDT , we implement the continuous attributes 
solving part of VFDTc ourselves.  

We ran our experiments on a Pentium IV/2GH machine with 512MB of RAM, 
which running Linux RedHat 9.0. 

Table 2 shows the processing (excluding I/O) time of learners as a function of the 
number of training examples averaged over nine runs. VFDT and sVFDT run with 

parameters 7
min10 , 5%, 300,  100000n example number Kδ τ−= = = = , no 

leaf reactivation, and no rescan. Averagely, comparing to VFDT, sVFDT`s average 
reduction of processing time is 16.65%, and comparing to VFDTc, sVFDT`s average 
reduction is 6.87%. 

Table 2. The comparing result of processing time 

                  time(seconds) 
  example numbers VFDT VFDTc sVFDT 

10000 4.66 4.21 3.65 
20736 9.96 8.83 8.01 
42996 22.88 20.59 18.37 
89156 48.51 43.57 40.47 

184872 103.61 93.25 86.62 
383349 215.83 187.77 174.12 
794911 522.69 475.65 439.28 
1648326 1123.51 1022.39 936.26 
3417968 2090.31 1839.45 1751.17 
7087498 3392.94 3053.65 2872.12 

14696636 5209.47 4688.53 4369.26 
30474845 8203.05 7382.75 6829.03 
43883922 13431.02 11953.61 11038.15 
90997707 17593.46 15834.12 14826.38 
100000000 18902.06 16822.86 15683.12 

 
Figure 3 shows the error rate curves of VFDT and sVFDT. Both algorithms have 

10% noise data, VFDT`s error rate trends to 13.3%, while the sVFDT`s error rate 
trends to 8.2%. Experiment results show that sVFDT get better accuracy by using soft 
discretization, and it solves the problem of noise data.  
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Fig. 3. Error rate as a function of the examples numbers 

5   Conclusions and Future Work 

On top of VFDT and VFDTc, we propose a system sVFDT to improve the soft 
discretization method. Focusing on continuous attribute, we have developed and 
evaluated a new technique named BST to insert new example and calculate best split-
test point efficiently. It builds binary search trees, and its processing time for values 
insertion is O(nlogn). Comparing to the method used in VFDTc, it improves from 
O(nlogn) to O(n) in processing time for best split-test point calculating. As for noise 
data, we improve the soft discretization method in traditional data mining field, so the 
sVFDT can deal with noise data efficiently and improve the classification accuracy. 

In the future, we would like to expand our work in some directions. First, we do 
not discuss the problem of time changing concept here, and we will apply our method 
to those strategies that take into account concept drift [4, 6, 10, 14, 15, 19, 24, 25]. 
Second, we want to apply other new fuzzy decision tree methods in data streams 
classification [8, 13, 17, 18, 26]. 
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Abstract. By means of analysis and generalization of the hypercube and its 
variations of the same topological properties and network parameters, a family 
of interconnection networks, referred to as binary recursive networks, is 
introduced in this paper. This kind of networks not only provides a powerful 
method to investigate the hypercube and its variations on the whole, but also 
puts forth an effective tool to explore new network structure. A constructive 
proof is presented to show that binary recursive networks are Hamiltonian based 
on their recursive structures, and thus a universal searching algorithm for 
Hamiltonian cycle in binary recursive networks is derived. 

Keywords: interconnection network; hypercube; binary recursive networks; 
Hamiltonian cycle. 

1   Introduction 

Network topology is a crucial factor for interconnection networks since it determines 
the performance of networks. Many interconnection network topologies have been 
proposed for the purpose of connecting thousands of processing elements. We find 
that there are some interconnection network topologies with the following attractive 
topological properties and good parameters: they are n-regular graphs with 2n  
vertices and 12nn −× edges, their shortest cycles are 4-length (when 2n ≥ ), and their 
structures are strictly recursive (every n-dimensional network is constructed by two 
( 1)n − -dimensional networks). These networks include the hypercube [11] and lots of 

its variations (such as the crossed cube [4, 5], the Möbius cube [3], the generalized 
twisted cube [2], the twisted n-cube [6] and the twisted-cube connected network [14]). 
The family of these networks is referred to as binary recursive networks in this paper. 

The topology of an interconnection network is usually represented as a graph. A ring 
(called a separating cycle) structure, which is a linear array with wraparound  
[8, 13], is widely used in interconnection networks, owing to its good properties such as 
low connectivity, simplicity, extensibility, as well as its feasible implementation. The 
embedding problem, which maps a source graph into a host graph, is an important topic 
of recent studies. The embedding of rings into various networks has been discussed in 
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[10, 12]. A cycle which visits each vertex in a graph exactly once is called a 
Hamiltonian cycle. The Hamiltonian cycle is the most important of all kinds of cycles. 

A graph G is Hamiltonian if there exists a Hamiltonian cycle in it. The 
Hamiltonian problem has long been fundamental in graph theory [7]. Hamiltonian is 
an important property for networks, which means that some Hamiltonian cycles exist 
in the networks. Hamiltonian cycles have been found in some binary recursive 
networks [2, 3, 4, 5, 6, 14, 15]. However, for different topologies, the methods of 
searching for Hamiltonian cycles are quite different and only suit their own special 
structures. There being no unified perspective to these variants, it is difficult to extend 
the results from the individual topology to the whole family. Park et al. [9] tried to use 
the induction principle to prove the existence of Hamiltonian cycle, but he failed to 
find out the uniform method for searching the Hamiltonian cycle of the family. The 
reason for the failure lies in the limitation of the definition they used for the family. 
Their definition is not algebraical, but descriptive. It cannot reflect the topology 
nature of the family. In this paper, however, we first redefine the family using an 
algebraic method, and then use this definition to prove the fact that the family of 
binary recursive networks is Hamiltonian graph. The proof is constructive, which is 
based on the structure recursive property of binary recursive networks. We can prove 
that all members of the family are Hamiltonian graphs. Based on the proof, we 
present a routing algorithm to find out a Hamiltonian cycle. This algorithm can begin 
with any vertex, and get a Hamiltonian cycle. 

Let ( , )G V E=  be an undirected simple graph. We adopt the fundamental graph 
terminology in [1, 5, 11] when using undirected graph to model interconnection 
networks. Given a graph G, the vertex set and the edge set of G are denoted by 

( )V G V=  and ( )E G E= , respectively. A path 0 0 1( , ) , , ,t tP v v v v v= L  is a sequence 
of nodes where two consecutive nodes are adjacent. A cycle (denoted as vC  hereafter) 
is a path with at least three vertices where the first vertex is the same as the last 
vertex. For 1 1 1 1n n i i ix x x x x x x V− − += ∈L L , denote bit ( )i ix x=  and 
pre ( )i x = 1 1n n n ix x x− − +L . 

The rest of this paper is organized as follows: Section 2 explains the basic 
definitions of the binary recursive networks. The main theorem and algorithm are 
proved in Section 3 and Section 4. We release our conclusion in Section 5. 

2   Binary Recursive Networks 

Definition 1.  Let 1n ≥  be an integer. The graph G is n-labeled, i.e. each of its vertex 

is labeled by an n-bit binary string. n i−∗  is a ( )n i− -length binary string ( { }0,1∗∈ , 

1 i n≤ ≤ ),  ( )n i−Γ ∗  is the set of vertices whose first n i−  bits are n i−∗ . If iR is a one-

to-one mapping from ( 0)n i−Γ ∗  to ( 1)n i−Γ ∗ , we call it an i-dimensional binary 

recursive adjacent function (adjacent function for short). 
Let iR  be an i-dimensional adjacent function of the n-labeled graph G, then 

according to the property of one-to-one mapping, we can obtain  

 (1) ( 0)n i
Gx −∀ ∈ Γ ∗ , ( 1)n i

Gy −∃ ∈ Γ ∗  such that ( )iy R x= , or 

(2) ( 1)n i
Gy −∀ ∈ Γ ∗ , ( 0)n i

Gx −∃ ∈ Γ ∗  such that ( )iy R x= , i.e. 1( )ix R y−= .  
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(3) 21, xx∀ , if 21 xx ≠ , then 1 2( ) ( )i iR x R x≠ . 

We denote the relationship of vertices x and y as ( )iy R x∗= .  

Definition 2. Let G be an n-labeled graph and iR (1 i n≤ ≤ ) an i-dimensional adjacent 
function of G. , ( )x y V G∀ ∈ , if and only if ( , ) ( )x y E G∈ , there exists an integer k  

{( , , })1, 2 n∈ L  such that ( )ky R x∗= , then we call G an n-dimensional binary 
recursive network determined by 1 2, , , nR R RL , denoted as nRN . If ( )ky R x∗=  

{( , , })1,2k n∈ L , we call ( , ) ( )x y E G∈  a kth-dimensional conjunction edge ( k-
conjunction edge for short), where x and y are the k-adjacent vertex of each other. 

According to the definitions of the hypercube, the crossed cube, the Möbius cube, 
the generalized twisted cube, the twisted n-cube and the twisted-cube connected 
network, we obtain their adjacent function (see Table 1). 

According to Definition 2, we know the networks above are all binary recursive 
networks. 

Table 1. Adjacent functions of typical binary recursive networks 

Type of networks Adjacent functions of networks ( 1,2, , )i n= L  

The hypercube ( )  i iH x x ε= +  

The crossed cube 
/ 2 1

2 1 2
1

( ) bit ( )
i

i i k k
k

C x x xε ε
−⎡ ⎤⎢ ⎥

−
=

= + + ∑   

The Möbius cube 
1

1
1

,           bit ( ) 0

( )  
,      bit ( ) 1

i i

i
i

k i
k

x x

M x
x x

ε

ε

+

+
=

+ =⎧
⎪= ⎨ + =⎪⎩

∑
  

The generalized twisted 
cube 

1 2

,                         mod( ,3) 1,2,
( )

bit ( ) ,   mod( ,3) 0
i

i
i i i

x i
G x

x x i

ε
ε ε− −

+ =⎧
= ⎨ + + =⎩

 

The twisted n-cube 
2

1 2 ,   2, (0 ),
( )

,          1,3, ,

n

i

i

x i x
T x

x i n

ε ε
ε

−⎧ + + = ∈ Γ
= ⎨ + =⎩ L

 

The twisted-cube 
connected network 

/ 2 1 1

2 1 2 2
1 3

( ) bit ( ) bit ( )
i i

i i k k k
k k

N x x x xε ε ε
−⎡ ⎤ −⎢ ⎥

−
= =

= + + +∑ ∑  

3   Hamiltonian Cycles in nRN  

Let α  and β  be binary strings and ( ) ( , )
nRN V Eα ααΓ =  ( ( )αΓ  for short), where  

{ }| ( ) and pre ( )nV x x V RN xα α α= ∈ = , 

{ }( , ) | ,  and ( , ) ( )nE x y x y V x y E RNα α= ∈ ∈ . 

And denote ( )( ) ( )α β αβΓ = Γ . 
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Theorem 1. nRN ( 2n ≥ ) are Hamiltonian graphs. 
Proof. (00)x∀ ∈ Γ , let 

1 1, ( ), ( ( )), ( ( ( )))x n n n n n nP x R x R R x R R R x∗ ∗ ∗ ∗ ∗ ∗
− −= , 

where 1( ( ( ))) (01)n n nR R R x∗ ∗ ∗
− ∈ Γ . So xP is a 3-length path ( 23 2 1= − ) (see Fig. 1).  

 

(01)Γ

(1)Γ

(00)Γ

nR nR

1−nR

x y

 

Fig. 1. ( 22 1− )-length paths 

iR ( 1,2, ,i n= L ) are one-to-one mappings, so if x y≠  , there are no same vertices 

in xP  and yP  for any ,  (00)x y ∈ Γ . Thus, we gain 2| (00) | 2n−Γ =  disjoint 3-length 

paths, their endvertices (the first vertex and the last vertex) are in (00)Γ  and (01)Γ  

respectively. 
From the presentation above, we know that the 2 12 2 2n n− −× =  endvertices of the 
22n−  disjoint paths { }| (00)xP x∈Γ  are all in (0)Γ . Whereas, each vertex in the (0)Γ  is 

a endvertex of some disjoint path because 1| (0) | 2n−Γ = . Furthermore, both (0) (10)Γ  

and (0) (11)Γ  have 32n−  vertices (other 22n− vertices in (0) (0) (00)Γ = Γ ). According to 
(0) (0)

2 ( (10)) (11)nR − Γ = Γ , 

we connect the ( 2n − )-adjacent vertices between (0) (10)Γ  and (0) (11)Γ (i.e. select 

every  ( 2n − )-conjunction edge in (0) (1)Γ ). Then the original 22n−  disjoint 2(2 1)− -

length paths become 32n−  disjoint 3(2 1)− -length paths (see Fig.2). 

 

nR nR

1nR

2nR(00)

(1)

(0) (10) (0) (11)

 

Fig. 2. ( 32 1− )-length paths 

We deal with the 22n−  endvertices in (00)Γ in the same way. There are 42n−  

vertices in (00) (10)Γ  and (00) (11)Γ  respectively, after connecting the ( 3n − )-adjacent 

vertices between (00) (10)Γ  and (00) (11)Γ , we gain 42n−  disjoint 4(2 1)− -length paths 

(see Fig.3). 
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(000)Γ (00) (10)Γ (00) (11)Γ (0) (1)Γ

(1)Γ

3nR −
2nR −

nR

1nR −

LLL L L L L L LLL

 

Fig. 3. ( 42 1− )-length paths 

Generally, there are 2n k−  endvertices of 12n k− −  disjoint 1(2 1)k + − -length paths in 

(0 )kΓ . Both (0 ) (10)
k

Γ  and (0 ) (11)
k

Γ  have 22n k− −  endvertices. After connecting those 

(n−k−1)-adjacent vertices, we gain 22n k− −  disjoint 2(2 1)k + − -length paths (k=3 ,  

4 ,…,n −3 ). 
Finally, only 2(2 ) 4=  endvertices are left in 2(0 )n−Γ , and there are 2 endvertices in 

2(0 ) (0)
n−

Γ  and 
2(0 ) (1)

n−
Γ  respectively. Here 0(2 ) 1=  endvertex 20 10 nu −=  in 

2(0 ) (10)
n−

Γ  

and 0(2 ) 1=  endvertex 20 11 nv −=  in 
2(0 )(11)

n−
Γ . According to 1 1( )u R v v ε= = + , we 

connect them, and gain  0(2 ) 1=  disjoint (2 1)n − -length path. Its endvertices are 
10 0ns −=  and 10 1nt −= . Obviously they are 1-adjacent vertices. After connecting s 

and t, the path we gained becomes a cycle which is 2n -length and its vertices are 
different to one another. There are exactly 2n  vertices in nRN , so this cycle is a 

Hamiltonian cycle of  the nRN . 

In a word, all nRN ( 2n ≥ ) are Hamiltonian graphs. 

Example 1. Finding a Hamiltonian cycle in 5-crossed cube 5CQ . 

Solution: First, constructing 5 22 8− =  vertex-disjoint 2(2 1 )3− = - length paths, 

00000 = 00000,10000,11000,01000P , 00001= 00001,10011,11001,01011P , 

00010 = 00010,10010,11010,01010P , 00011= 00011,10001,11011,01001P , 

00100 = 00100,11100,10100,01100P , 00101= 00101,11111,10101,01111P , 

00110 = 00110,11110,10110,01110P , 00111 00111,11101,10111,01101P = . 

Each  of these paths has one endvertex in 
5
(00)CQΓ . Since (0) (0)

3( (10)) (11)R Γ = Γ , 

connecting 3-adjacent vertices which are in (0) (10)Γ  and (0) (11)Γ  respectively, we 

gain 5 32 4− =  vertex-disjoint 3(2 1 )− = 7-length paths. Their endvertices are in 

5
(00)CQΓ : 
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00000,10000,11000,01000,0110010100,11100,00100 ,  

00001,10011,11001,01011,01101,10111,11101,00111 ,  

00010,10010,11010,01010,01110,10110,11110,00110 ,  

00011,10001,11011,01001,01111,10101,11111,00101 .  

Similarly, connecting these 2-adjacent vertices 00100 and 00110, 00101 and 00111 
(which are in (00) (10)Γ  and (00) (11)Γ  respectively), we gain 2 vertex-disjoint 

4(2 1)− = 15-length paths. Their endvertices are in (000)Γ : 

0 = 00000,10000,11000,01000,01100,10100,  11100,00100,

        00110,11110,10110, 01110,01010,11010,10010,00010 ,

P
 

1 00001,10011,11001,01011,01101,10111,11101,00111,

                 00101,11111,10101, 01111,01001,11011,10001,00011 .

P =
 

Connecting the endvertices 00000 of 0P  and 00001 of 1P , 00010 of 0P  and 00011 

of 1P , we gain one vertex-disjoint 5(2 )= 32-length cycle -- a Hamiltonian cycle in 

5CQ  (see Fig 4 ). 

00000 00010 

00011 00001

01001

01000 01010 

01011 

01110 01100

0110101111 

00111 00101

0010000110 10100 10110

1011110101

10010 10000 

10001 10011

11011 11001 

11000 1101011100 11110

1111111101

 

Fig. 4. Hamiltonian cycle in 5CQ  

4   A Routing Algorithm for Hamiltonian Cycle in nRN  

Algorithm 1. Computing Hamiltonian cycle in nRN . 

Input: Integer n, 1 2( ), ( ), , ( )nR x R x R x∗ ∗ ∗L , and the beginning 

vertex ox . 

Output: A Hamiltonian cycle 2n

xC . 
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Step 1: Reason about 
1 12 1 2 1

1 ( )
n n

P R P x
− −− ∗ −  with 1 2( ), ( ), , ( )nR x R x R x∗ ∗ ∗L , 

where  
1 12 1 2 1 2 1

1

n i n i n i

iP P R P
− − − − −− − ∗ −

+=  (1 1)i n≤ ≤ − . 

Step 2: Count 
1 12 2 1 2 1

1 1 0( )( )
n n n

xC R P R P x
− −∗ − ∗ −=  step by step, and 

record the value of every step. 

Step 3: Return 2n

xC . 

Validity of this algorithm can be directly verified by Theorem 1. 

Example 2. Finding a Hamiltonian cycle in a 5-crossed cube 5CQ . 

Input: 5n = , 0 00000x =  and ( ) ( 1,2, , )iR x i n= L , 
/ 2 1

2 1 2
1

( ) bit ( )
i

i i k k
k

R x x xε ε
−⎡ ⎤⎢ ⎥

−
=

= + + ∑ . 

Ste 1: 5 5 1 5 12 2 1 2 1
1 1( )( )xC R P R P x

− −∗ − ∗ −=  

1 5 4 5 3 5 4 5 2 5 4 5 3 5 4 5 1 5 4 5 3 5 4 5 2 5 4 5 3 5 4 5( )( )R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R x∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗=  

Step 2: 5 (00000) 10000R∗ = , 4 (10000) 11000R∗ = , 5 (11000) 01000R∗ = , 

                3 (01000) 01100R∗ = , 5 (01100) 10100R∗ = , 4 (10100) 11100R∗ = , 

5 (11100) 00100R∗ = , 2 (00100) 00110R∗ = , 5 (00110) 11110R∗ = , 

4 (11110) 10110R∗ = , 5 (10110) 01110R∗ = , 3 (01110) 01010R∗ = , 

5 (01010) 11010R∗ = , 4 (11010) 10010R∗ = , 5 (10010) 00010R∗ = , 

1 (00010) 00011R∗ = , 5 (00011) 10001R∗ = , 4 (10001) 11011R∗ = , 

5 (11011) 01001R∗ = , 3 (01001) 01111R∗ = , 5 (01111) 10101R∗ = , 

4 (10101) 11111R∗ = , 5 (11111) 00101R∗ = , 2 (00101) 00111R∗ = , 

5 (00111) 11101R∗ = , 4 (11101) 10111R∗ = , 5 (10111) 01101R∗ = , 

3 (01101) 01011R∗ = , 5 (01011) 11001R∗ = , 4 (11001) 10011R∗ = , 

5 (10011) 00001R∗ = , 1 (00001) 00000R∗ = . 

Step 3: return 
52

00000C : 
52

00000 00000,10000,11000,01000,01100,10100,11100,00100,  

             00110,11110,10110,01110,01010,11010,10010,00010,

              00011,10001,11011,01001,01111,10101,11111,00101,

              00111

C =

,11101,10111,01101,01011,11001,10011,00001,00000 .

 

5   Conclusion 

In this paper, we named a family of interconnection networks as Binary Recursive 
Networks. The network structures are variations of hypercube. Then we get a general 
algebra expression of the adjacent functions of the binary recursive networks. 
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Using the adjacent functions, we give a constructive proof to show that all the binary 
recursive networks are Hamiltonian. This proof provides a method of constructing 
Hamiltonian cycle in the binary recursive networks. An example is given to illustrate 
the method. At last, an algorithm for rapidly searching Hamiltonian cycles is given.  

In the future, we are going on to study Hamiltonian-like properties (such as almost-, 
odd-, even-pancyclicity) and the Hamiltonian connectivity of , ( 2)nRN n ≥ .  
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Fault-Tolerant Routing in Folded Cubes
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Abstract. In folded cube computer network, we developed a new algo-
rithm for fault-tolerant routing which is based on detour and backtrack-
ing techniques. Its performance is analyzed in detail in the presence of an
arbitrary number of components being damaged and derived some ex-
act expressions for the probability of routing messages via optimal paths
from the source to obstructed node. The probability of routing messages
via an optimal path between any two nodes is a special case of our re-
sults, and can be obtained by replacing the obstructed node with the
destination node. It is also showed that in the presence of component
failures this algorithm can route messages via an optimal path to its
destination with a very high probability.

1 Introduction

Data distribution among processors and internode message routing are central is-
sues in the implementation of a parallel algorithm on a multiprocessor computing
system([1][2]).The the n-dimensional hypercube Qn is a well-known interconnec-
tion topology, and it meets several computational demands of a multiprocessors
of computing system. However among a few drawbacks of this architecture, the
connectivity and diameter are not small when its dimension is big enough and
the complete binary tree Bn on 2n − 1 vertices can not be embedded into the
hypercube Qn with dilation one([3]). Hence, there are many improved structures
such as m−ary n−cube Qn(m) and the folded cube FQn. Recent years Qn(m)
multi-computer networks have received considerable attention mainly focusing
on its features, routing algorithm ,fault-tolerant and transmission delay ([4] [5]
[6] [7]). Folded cube FQn is a popular topological structure of multi-computers
network. To make FQn multi-computer useful for reliable critical applications,
significant research efforts have been made on it. For example, [8] investigated the
properties and performance of FQn in detail, paper [9] discussed the embedding
binary trees into folded cube and [10] found that there are hamilton cycles in
FQn with faulty links. Meanwhile [11] made a good job by constructing method
and proposed that there exists an extendible embedding of complete binary tree
Bn into FQn for every even n ≥ 2. The hardware cost in designing Qn(m) and
FQn are greater when compared to hypercube Qn. However, the overhead is
negligible when n is large. These networks achieve considerable improvement in

F.P. Preparata and Q. Fang (Eds.): FAW 2007, LNCS 4613, pp. 236–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the running time of message routing, specially in FQn because of its smaller di-
ameter and smaller internode distance.Owing to their higher node degree, these
networks also have higher connectivity, so have better fault tolerance and better
diagnostic capabilities compared to hypercubes.

This paper will make use of probabilistic idea and detour and backtrack-
ing techniques to investigate the fault tolerant routing based on the depth-first
search approach in FQn multi-computer. Similar discussion has been made for
hypercube Qn ([12]).

A connected folded cube with fault components is called an injured folded
cube. In order to enable non-fault nodes (called normal nodes) in an injured
folded cube to communicate with each other, enough network information must
be either kept at each node or added to the message to be routed. The first
approach requires each node to keep a certain amount of global information
for its routing decisions. This however necessities the propagation of updated
network information when the network condition (fault or not) of its adjacent
links or nodes changed. For the second approach, each node is required to know
only the condition (faulty or not)of its adjacent components. In this paper, we
develop a new fault-tolerant routing algorithm scheme for FQn multi-computers,
in which each message is accompanied with a stack which keeps track of the
history of the path travelled, and tries to avoid visiting a node more than once
unless a backtracking is enforced.

We shall first develop the routing scheme, in which every node is only required
to know the status of its adjacent components. The path that a message has
traversed is kept track of by the message as it is routed toward its destination.
Then the performance of this routing algorithm is analyzed rigorously.

An optimal path between a pair of nodes is a path of length equal to the
distance between these two nodes. Under the proposed routing scheme, the first
node in the message’s route that is aware of the nonexistence of an optimal path
from itself to the destination is called obstructed node. At the obstructed node,
the message has to take a detour, that is, non-optimal path will be chosen. In this
paper, we derive exact expressions for the probabilities of optimal path routing
from the source node to a given obstructed node in the presence of both link
and node failures. Note that determination of the probability for optimal path
routing between any two nodes can be viewed as an obstructed node that is 0
hop away from the destination node.

This paper is organized as follows: necessary notations and definitions are
introduced in Section 2. A fault-tolerant routing algorithm for folded cube FQn

multi-computers is presented in Section 3. The performance of this routing
scheme is analyzed rigorously in Section 4. The paper concludes with Section 5.

2 Preliminaries

Suppose G(V, E) is a simple graph. The set of vertices and the set of edges of G
are denoted by V (G) = V , and E(G) = E, respectively. If xy ∈ E, then x and y
are neighbor vertices. G is k−regular if the degrees of all vertices is k. computer
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network topology usually can be represented by a graph G(V, E), where vertices
(or nodes) represent processors and edges represent links between processors.

The n-dimensional hypercube Qn has vertex set consisting of all the n−bit,
that is, V (Qn) = {x1x2 . . . xn : xi = 0, 1}, with two vertices x and y adjacent iff
they differ in exactly one bit. Folded cube is defined as graph FQn which vertex
set is V (FQn) = V (Qn) and edge set is E(FQn) = E(Qn)

⋃
{xx : x ∈ V (FQn)},

where we defined x = x1x2 . . . xn , x = x1x2 . . . xn and xi = 1 − xi. We use
x = x1x2x3 . . . xn to express vertex x, the leftmost coordinate of the address
will be referred to as dimension-1, and the second to the leftmost coordinate as
dimension-2, and so on.

Suppose x = x1x2x3 . . . xn, xi ∈ {0, 1} and y = y1y2y3 . . . yn, yi ∈ {0, 1}
be two nodes of FQn, xy is an edge of dimension−i if x1 = y1, x2 = y2, . . . ,
xi−1 = yi−1, xi �= yi, xi+1 = yi+1, . . . , xn = yn. xy is an edge of opposite-
dimension if yi = xi, for all i ∈ {1, 2, . . . , n}. From the definition, FQn contains
2n vertices and 2n−1(n + 1) edges, and FQn is a (n + 1)-regular graph with
diameter �n

2 �. If n = 1, it is a complete graph K2. If n = 2, it is a complete
graph K4.

The Hamming distance between two nodes x = x1x2x3 . . . xn and y =
y1y2y3 . . . yn in FQn is defined as

H(x, y) =
n∑

i=1

|xi − yi|

Let d(x, y) denote the distance between vertices x and y. Then with the defi-
nition of Hamming distance, we have the following lemma.

Lemma 1. If H(x, y) ≤ �n
2 �, then d(x, y) = H(x, y); If H(x, y) > �n

2 �, then
d(x, y) = n − H(x, y) + 1.

For the sake of convenience, we now introduce two concepts.
A path in FQn can be represented by a sequence of n−bit strings such that

every two consecutive n−bit strings differ by exactly one bit or differ at all bits.
An optimal path is a path whose length is equal to the distance between the
source and destination. We call the routing via an optimal path the optimal
routing. A link of node x is said to be toward another node y if the link belongs
to one of the optimal path from x to y and call y the forward node of x.

Suppose x = x1x2 . . . xn and y = y1y2 . . . yn be two vertices, and H(x, y) = k.
We define diff(x, y) = {d1, d2, . . . , dk} be the dimension set in which x and y dif-
fer and let d1 < d2 < . . . < dk and define same(x, y) = {s1, s2, . . . , sn−k} the di-
mension set in which x and y have the same value and s1 < s2 < . . . < sn−k, that
is, xdj �= ydj for j ∈ {1, 2, . . . , k} and xsi = ysi for i ∈ {1, 2, . . . , n − k}. For in-
stance, in FQ6, if x = 100100 and y = 111001, then d1 = 2, d2 = 3, d3 = 4, d4 = 6
and s1 = 1, s2 = 5. A given path of length k between x and y in FQn can be
described by a coordinate sequence C = [c1, c2, . . . , ck] where 1 ≤ ci ≤ n, the
coordinate sequence is a sequence of ordered dimensions. A coordinate sequence
is said to be simple if any dimension does not occur more than once in that
sequence. It is easy to see that a path is optimal only if its coordinate sequence
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is simple. For example, [000001, 001001, 001101, 101101] is an optimal path from
000001 to 101101, and can be represented by a coordinate sequence [3, 4, 1]. If
H(x, y) ≤ �n

2 �, then the optimal path from x to y can be expressed the coor-
dinate sequence C = [dj1 , dj2 , . . . , djk

], where j1, j2, . . . , jk is a permutation of
1, 2, . . . , k. Otherwise, we will transmit message from x to x and then by the
coordinate sequence C = [sj1 , sj2 , . . . , sjn−k

] message can be transmitted from x
to y, which is an optimal path between x and y.

Definition 1. The exclusive operation between binary strings x = x1x2 . . . xn

and y = y1y2 . . . yn, denoted by x⊕ y = r1r2 . . . rn, is defined as ri = 0 if xi = yi

and ri = 1 if xi = yi

Let ei = e1e2 . . . ei . . . en where ei = 1 and ej = 0 for all j �= i. For example,
000001 ⊕ e3 = 001001

Definition 2. The number of inversions of a simple coordinate sequence C =
[c1, c2, . . . , ck] denoted by V (C), is the number of pairs (ci, cj) such that 1 ≤ i <
j ≤ k but ci > cj . For example V ([3, 4, 1]) = 2.

3 Routing Algorithm

An adaptive routing algorithm is proposed here, which requires every node to
know only the condition (fault or not)of its own links. The case that a node is
faulty is treated as that all neighbors of the node are faulty. This algorithm can
successfully route messages between any pair of connected non-fault nodes.

The algorithm will attempt to avoid visiting the same node more than once
except when backtracking is forced. Thus, those nodes that message traversed
so far are recorded in a set TD and will be delivered together with the message
to the next node. When the source node begins routing a message, TD is set to
be empty set φ. Therefore, information to be phased on to the next node can be
represented as (message, TD). The source node is denoted by s, destination node
by d, H(s, d) = k, and the current node by u. A message reaches its destination
when u = d.

When a node has received a message, it will check the value of u to see if
the destination is reached. If not, the intermediate node will try to send the
message along an optimal path to the destination. however, if all the optimal
paths are blocked by fault components and those nodes visited before, the node
will route the message via an alternative path, which is called detour. When there
is no alternative path available, backtracking is enforced, that is, the message is
returned to the original node.

Algorithm A: Fault-tolerant Routing Algorithm
Step 1. If diff(u, d) = φ, the message is reached destination, Stop.

Set u := s
Step 2. Compute H(u, d), Set k = H(u, d)
Step 3. If k ≤ �n

2 �,
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Step 4. For j := 1, k do,
if dj ∈ diff(u, d), u ⊕ edj and u(u ⊕ edj ) are normal and u ⊕ edj /∈ TD,
send (message, TD) to u ⊕ edj , TD = TD ∪ {u ⊕ edj}, u = u ⊕ edj

Step 5. If k > �n
2 �, then send message to s, set u := s

step 6. For j := 1, n − k do,
if sj ∈ same(u, d), u ⊕ esj and u(u ⊕ esj ) are normal, and u ⊕ esj /∈ TD,
send (message, TD) to u ⊕ esj , TD = TD ∪ {u ⊕ esj }, u = u ⊕ esj .

/*If the algorithm is not terminated yet, all optimal paths to destination are
blocked by fault components and nodes traversed before*/

Step 7. For j := 1, n − k do,
if sj ∈ same(u, d), u ⊕ esj and u(u ⊕ esj ) are normal, and u ⊕ esj /∈ TD,
send (message, TD) to u⊕esj , TD = TD∪{u⊕esj}, u = u⊕esj . Go to Step 2.

/*A detour is taken*/

Step 8. If the algorithm is not terminated yet, then Backtracking is taken, the
message must be returned to the node from which this message was originally
received.

To route a message to its destination in folded cube FQn networks allowing
some fault components, those nodes traversed before by the message must be
made known to the intermediate nodes so as to avoid message looping. This is
the very reason that under A every intermediate nodes has to append to the
message a tag TD.

4 Performance Analysis of Routing Algorithm

We consider a folded cube FQn network with a given number of fault nodes and
fault links, and all possible distributions of fault components are assumed to be
evenly.

For convenience, we introduce a definition of weight of a set of dimensions to
be W (dj1 , dj2 , . . . , djt) =

∑t
i=1 ji.

Theorem 1. Suppose x and y are respectively the source and destination nodes
in a folded cube FQn network, and H(x, y) = �n

2 �. Then the number of fault
components required for the simple coordinate sequence C = [dj1 , dj2 , . . . , djt ] to
be the path chosen by algorithm A to an obstructed node located j hops away
from y is V (C) + W (dj1 , dj2 , . . . , djt) −

∑t
i=1 i + j, where t = �n

2 � − j.

Proof. Due to the symmetric structure of FQn, without loss of generality, we
suppose that the source x = x1x2x3 . . . xn, y = x1x2 . . . x�n

2 �x�n
2 �+1 . . . xn. With

algorithm A, the lowest dimension among those dimensions not traversed before
will be chosen first. Since H(x, y) = �n

2 �, the selection of dimension dj1 to the
first hop implies that j1 − 1 fault components have been encountered. Also, the
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selection of dimension j2 to the second hop means there are another j2 − 1 fault
components encountered if dj2 < dj1 , or there are another j2−2 fault components
encountered if dj2 > dj1 . Similarly, we know that up to the obstructed node (i.e.,
the first t hops), the message must have encountered

∑t
i=1(ji −1)−V (CR). But

V (C) + V (CR) = t(t − 1)/2. Since C = [dj1 , dj2 , . . . , djt ] is a simple coordinate
sequence, either dji < djr or dji > djr , every pair of (dji , djr ) must be counted in
V (C) or V (CR). However, there are C2

t = t(t−1)/2 different ways to choose pairs
((dji , djr )) from (dj1 , dj2 , . . . , djt). Therefore

∑t
i=1(ji − 1)−V (CR) =

∑t
i=1 ji −

t − t(t − 1)/2 + V (C) = V (C) +
∑t

i=1 ji − t(t + 1)/2 fault components. This
completes the proof.

Denote the set of combinations of r different numbers out of the set {1, 2, . . . , n}
by S(n, r), clearly |S(n, r)| = Cr

n is the number of combinations of r objects out
of n different objects. Let In(r) denote the number of permutations of n numbers
with exactly r inversions. we discuss In(r).

Let i1i2 . . . in be a permutation of the set {1, 2, 3, . . . , n}. The pair (ik, il) is
called an inversion if k < l andik > il. For example, the permutation 31542
has five inversions, namely (3,1), (3,2), (5,4), (5,2), (4,2). For a permutation
i1i2 . . . in, we let aj denote the number of inversions in permutation which pre-
cede j but are greater than j. The sequence of numbers a1, a2, . . . , an is called
the inversion sequence of the permutation i1i2 . . . in. [13] affords the following
theorem.

Theorem 2. Let b1, b2, . . . , bn be a set of sequence of integers with 0 ≤ b1 ≤
n − 1, 0 ≤ b2 ≤ n − 2, . . . , 0 ≤ bn−1 ≤ 1, bn = 0. Then there exists a unique
permutation of {1, 2, . . . , n} whose inversion sequence is b1, b2, . . . , bn.

By Theorem 2, we know that In(t) equals the number of non-negative integer
solutions of the equation:

b1z1 + b2z2 + . . . + bnzn = t, 0 ≤ zi ≤ 1, 1 ≤ i ≤ n. (1)

This equation can be solved by using generation function.

Theorem 3. Suppose there are f fault links in a folded cube FQn , and a mes-
sage is routed by A from node x to y where H(x, y) = �n

2 �. Let hL be the
Hamming distance between obstructed node and the destination node. Then

P (hL = j) =
1

Cf
L

∑

σ∈S(�n
2 �,t)

min{ � n
2 �(� n

2 �−1)
2 ,f−j}∑

i=0

It(α)Cf−j−i
L−�n

2 �−i

where α = i − W (σ) + t(t+1)
2 and P (A) is the probability of event A, L =

(n + 1)2n−1 and t + j = �n
2 �.

Proof. There are Cf
L different configurations of fault links. The problem of ob-

taining P (hL = j) is then reduced to that of counting the number of configura-
tions which lead to the case of hL = j. Since the message traverses t = �n

2 � − j
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hops before it reaches the obstructed node, there are |S(�n
2 �, t)| = Ct

�n
2 � possible

locations of the obstructed node. No loss of generality, let x = 00 . . . 0 be source
and y = 11 . . .1︸ ︷︷ ︸

�n/2�
00 . . .0 destination. Then there is a one-to one correspondence

between each element in S(�n
2 �, t) and each possible location of the obstructed

node.
Consider an obstructed node location u which is determined by an element

σ ∈ S(�n
2 �, t). Let C be the coordinate sequence from x to u. From Theorem

1, we know that the message has encountered V (C) + W (σ) + t(t + 1)/2 fault
links before reaching u. Thus, the number of different paths from x to u while
traversing the dimensions in σ and encountering i fault links can be expressed as
It(i − W (σ) + t(t + 1)/2). For each given coordinate sequence to u, the location
of these k fault links encountered before reaching u are determined. Moreover,
there are additional j fault links adjacent to u. also, note that t links in the path
from x to u are non-fault. Therefore, the number of different configurations for
a given coordinate sequence or path to a certain obstructed node location u is
Cf−j−i

L−j−i−t = Cf−j−i
L−�n

2 �−i. Thus, this theorem finishes.

The probability of an optimal path routing can be viewed as a special case
of Theorem 3 by setting the obstructed node to the destination node, namely,
P (hL = 0). So we have the following corollary.

Corollary 1. The probability for a message to be routed in an FQn with f
fault links via an optimal path to a destination node which is n hops away can
be expressed as

P (hL = 0) = β

min{ � n
2 �(� n

2 �−1)
2 ,f}∑

i=0

I�n
2 �(i)C

f−i
(n+1)2n−1

where β = 1
Cf

(n+1)2n−1
.

Note that if j = 0, then t = �n
2 �. S(�n

2 �, t) = S(�n
2 �, �n

2 �) is (1, 2, . . . , �n
2 �) and

W (1, 2, . . . , �n
2 �) = �n

2 �(�n
2 � + 1)/2. The Corollary is true.

5 Conclusion

Computer network safety is an important issue in the research of computer
science. When there are many components suffering damage, transmitting data
safely and efficiently is an essential work. Folded cube FQn is a popular network
topology for parallel processing computer systems. This paper has proposed a
new fault-tolerant routing algorithm for FQn networks. Its performance has been
analyzed in the presence of arbitrary number of damaged components. Some
exact expressions for the probability of routing messages via optimal paths from
the source node to obstructed node have been derived. The existing result of the
probability of routing messages via an optimal path between any two nodes is
a special case of our results, and can be obtained by replacing the obstructed
node with the destination node.
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Abstract. It is quite important and difficult for doctors to detect pathologic 
regions of prostate ultrasonic images. An automated region detection algorithm 
is proposed to solve this problem, especially for ultrasonic images containing 
all kinds of noise and speckle. First, all the pixels of an ultrasonic image are 
fired by Pulse Coupled Neural Network (PCNN). Then after being processed by 
morphological closing, binary reversing and region labeling, the seeds are 
detected automatically using PCNN, by  which the region of interest (ROI) of 
the ultrasonic image is detected by Region Growing. In the end, we code the 
ROI by pseudo-color. Detected pathologic regions can be used for further 
clinical inspection and quantitative analysis of ultrasonic images.  

Keywords: Prostate Ultrasonic Image, Pulse Coupled Neural Network, Image 
Segmentation, Pseudo-color. 

1   Introduction 

In the field of modern clinical diagnosis, medical imaging technologies, such as US, 
CT, MRI, PET, have been playing an important role in detecting and treating of 
numerous diseases. The radiologists present 2D or 3D images, giving patients a 
detailed view of their anatomies. Because of the diverse physiological properties, 
tissues would display kinds of medical images by different medical imaging 
equipments. Appropriate equipments should be selected to detect different tissues 
because single medical imaging equipment is not suitable for all kinds of disease 
diagnosis. Ultrasonic imaging is a common modality in current medical practice. It is 
used to image soft tissues, such as lungs, prostate, liver, spleen, thyroid or the 
neonatal brain. The advantages of ultrasound imaging are its rapid speed, high 
security, cost effectiveness and portability of the equipment, which make it more 
suitable than CT or MRI in many situations [1]. 

In medical imaging, ultrasonic image analyzing remains a difficult task. And for the 
same image, the opinions of different doctors are not consistent [2]. Along with the 
improvement of image acquisitions, more and more image data are obtained from various 
imaging modalities. Especially for video stream, doctors need to process large numbers of 
data every day, and the manual or semiautomatic processing technologies can not satisfy 
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their requirements. In this instance, Computer-Aided Diagnosis (CAD) technology 
provides doctors with automated and impersonal processing methods. However, most 
medical images have lots of shortcomings, such as complexity, variability or blur, 
requiring users to operate the CAD system manually sometimes [3~5].  

PCNN is a new artificial neural network which comes from the research of small 
mammals’ visual properties [6]. It has an excellent ability for segmentation because of 
its synchronous pulse burst, changeable threshold and controllable parameters. 
Combining PCNN with mathematical morphology, we propose an automated 
pathologic region detection algorithm. 

2   PCNN and Mathematical Morphology  

In 1990, Eckhorn proposed the model of Pulse-Coupled Neural Network after 
researching the synchronous pulse burst phenomenon of the cat visual cortex [7]. 
PCNN has predominance in image processing, image recognition, moving object 
recognition and so forth [8]. 

Fig.1 shows a single neural model of PCNN. It is composed of three elements: 
Dendritic Tree, Linking Modulation and Pulse Generator Element. The Dendritic tree 
includes two parts of the neuron element, the linking and the feeding. The linking 
region incorporates neighborhood information, namely other neurons’ outputs, with 
the internal activity of the neuron element. The feeding region incorporates the input 
signal information and also neighbor information. Dendritic Tree receives the inputs 
from other neurons, and then transmits them through two channels, one is F Channel 
and the other is L Channel. Lj is added to a constant positive bias and then multiplied 
by Fj which comes from F Channel. Pulse Generator Element is composed of a pulse 
generator and a comparator, whose threshold is changeable. It compares the internal 
activity with a dynamic threshold to decide whether the neuron fires or not. When the 
threshold θj is greater than Uj, the pulse generator is turned off and the pulses are 
stopped to put out. Otherwise, the pulse generator is opened, the neuron fires, and a  
 

W

×F
U

Step function  

V
f(x)=1+ xY

Y

L
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Threshold function 

0 1

ModulationFeeding input  

Dendritic Tree Linking Modulation Pulse Generator 
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Fig. 1. A neuron model of PCNN 
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pulse or pulse sequence is emitted. The whole Pulse-Coupled Neural Networks work 
as follows: If the neuron has a pulse to put out, the changeable threshold would 
increase abruptly. Therefore, the second firing is forbidden, and the threshold decays 
exponentially. After that, θj would be less than Uj again, the neuron is activated 
secondly. Distinctly, these pulses are input to other neurons to affect their firing 
states. Every neuron carries their iterative computations as follows: 

① The Feeding and Linking compartments receive inputs from stimulus and 
previous states, and communicate with neighboring neurons through the synaptic 
weights M and W respectively. The values of these two compartments are determined 
by, 

[ ] [ ] [ ]exp( ) 1 1ij F ij F ijkl kl ijF n F n V m Y n Sα= − − + − +∑          (1) 

[ ] [ ] [ ]exp( ) 1 1ij L ij L ijkl klL n L n V w Y nα= − − + −∑        (2) 

② The states of these two compartments are combined in a second order fashion to 
create the internal state of the neuron, U. The combination is controlled by the linking 
strength, β. The internal activity is calculated by, 

[ ] [ ] [ ]( )1ij ij ijU n F n L nβ= +              (3) 

③ In pulse generate compartment, U is compared with dynamic threshold, θ, to 
produce the output, Y. If Uij is greater than θij, the Pulse Generator would output 1, 
otherwise 0, by 

[ ] [ ] [ ]1 0ij ij ijY n if U n n or otherwiseθ= >        (4) 

④ When the neuron fires, the dynamic threshold, θ, increases its value abruptly, 
and then decays until the neuron fires again by, 

[ ] [ ]exp( ) 1 [ 1]ij ij ijn n V Y nθ θθ α θ= − − + −        (5) 

When PCNN is used for image processing, it is a monolayer two-dimensional array 
of laterally linked neurons. The number of neurons in the network is equal to the 
number of pixels in the input image. One-to-one correspondence exists between 
image pixels and neurons. Each pixel is connected to a unique neuron and each 
neuron is connected with the surrounding neurons. The intensities of pixels are put 
into neurons correspondingly, and the neuron firing equals to the pixel firing. 

Mathematical Morphology has been enriched and developed continuously since it 
was put forward for the first time by G. Matheron and J. Serra in 1964. This subject is 
based on strict mathematical theories such as integral geometry, set algebra and 
topology theory, and refers to modern probability theory, neo-mathematics, etc. 
Though its theories foundation is very complex, the basic principle is relatively 
simple. When Mathematical Morphology is applied to image processing, the pixels 
are regarded as the sets of points, a structural element is used to do the operations as 
follows: intersection, union, and shift. Accordingly, other mathematical morphology 
processing algorithms come into being in terms of the basal set operations [9].  

In practical image processing applications, dilation and erosion are in common use and 
can make up of opening, closing, hitting, thinning or thicking in various combinations.  

PCNN is the research result of biology, so it has the biological background and has 
an equivalence relation with mathematical morphology in image processing. A 
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neuron’s firing in some time would bring on the neurons besides it firing and these 
neurons would also bring on their surrounding neurons’ firing. The pulses would 
spread like automatic waves. Inverse the fired regions, we will get the shrunk regions 
which are caused by spreading pulse. So, the parallel pulse spreading is equal to the 
dilation operation in mathematical morphology. Using this property, we can construct 
other mathematical morphology operators. 

3   Ultrasonic Image Processing Using PCNN  

Ultrasonic images are usually characterized by complexity, low contrast and all kinds 
of speckle, making ultrasonic image processing very difficult. PCNN was introduced 
into the field of ultrasonic image processing, and edge detection algorithm and image 
enhancement algorithm were proposed by us for the first time. 

We use PCNN to segment the original ultrasonic image and one area of the image 
is obtained after each iteration. Detect this area’s edge, judge whether the current 
pixel is an edge pixel and mark it in another matrix. Also mark the current area, and 
place it to another matrix. After several segmentation and region detection, all pixels 
are detected. Combine the results, and we can get the image’s edges. PCNN model is 
the simulation of visual behavior, and its output reflects some human visual 
properties. All of the parameters of PCNN, threshold θij is one of the most active 
parameters. It determines neurons’ firing time. After neurons’ firing, θij increases to a 
great value, and then decays exponentially. When Uij is greater than θij again, the 
neuron fires once more. Now θij is greater than the corresponding pixel’s gray level, 
and has been stretched exponentially. Here, we set Y as equation (6):  

[ ] [ ] [ ] 0 (6)ij ij ij ijY n if U n n or otherwiseθ θ= ≥  

Superpose the firing images of different time, and we get the primary enhanced 
image. Fig. 2 and Fig. 3 depict the processing outcome of edge detection algorithm 
and image enhancement algorithm using PCNN. 

Fig. 2. Gallbladder ultrasonic image edge detection 

4   Pathologic Region Detection Algorithm 

Aiming at the more and more medical data and noise of ultrasonic images, we 
propose a pathologic region automatic detection algorithm based on PCNN. Prostate 
ultrasonic images are selected as experiment images, which contain small sick regions 

(c) Canny Edge Detector (d) Our algorithm (b) Sobel Edge Detector (a) Gallbladder  
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(c) Reference [10] method (d) PCNN enhancement

(b) Histogram equalization (a) Gall-stone image

 

Fig. 3. Gall-stone ultrasonic image enhancement 

depicted in Fig. 4. The concrete algorithm is depicted as follows, in which the pre-
processing part contains taking out irrespective regions, mean filtering and 
smoothing. 

(1) Acquire the original  
ultrasonic image I, and pre- 
process it; 

(2) Segment I by simplified PCNN: 
 

a. Initial PCNN’s parameters:  

β=0.4，αθ=0.3，Vθ=240,  

  

1
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1 0 1 ,
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W

⎡ ⎤
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⎢ ⎥⎣ ⎦   

define threshold matrix T, storing matrix Y for fired 
pixels, storing matrix Y1 for pixels fired the first 
time, edge storing matrix E, fired regions storing 
matrix Z; 

b. T(i,j)=Vθ, n=1; 

c. Scan the image matrix I, and calculate them one by 
one, F(i,j)=S(i,j)，L=W1*Y[n-1]，U=F(1+β*L)； 

Fig. 4. Prostate ultrasonic image 
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If U(i,j)> T(i,j)  Y(i,j)=1, isolate the (i,j) pixel so 
as to ensure it will never fire again; 

else Y(i,j)=0；  

d. Detect the edge of the region fired this time, and 
note it in E; label the region, note it in Z; 

e. All the neurons unfired are decayed by multiplying 
exp(-αθ)； 

f. n=n+1, if all neurons are fired, end calculation, 
output E and Z, else go back to step c.  

(3) Do closing operation for Y1; 

(4) Inverse the outcome of step (3), and label it; 

(5) Take the pixels of small region as seed pixels, use 
region growing to extract ROI; 

(6) Code the ROI using pseudo-color to enhance it; 

(7) Integrate the outcomes, and output them. 

(a) Original images (b) Detected ROI (c) Output Images (d) Manual Results  

Fig. 5. Detection results by the automated region detection algorithm 
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We test the algorithm under the platform of MATLAB 7.0. Fig.5(b) are extracted 
outcomes detected by our algorithm. From Fig.5, we can see that the extracted ROI 
have good region integrality, uniformity and connectivity, which make the 
segmentation much more robust and exact. Using pseudo-color to enhance the ROI, 
we get the result shown in Fig.5(c), and Fig.5(d) are manual results. Hereto, the image 
details have been enhanced according to their intensities, by which quantitive analysis 
can be done further. The disadvantage of Region Growing is that the operator needs to 
select seed pixels manually. In order to extract useful regions, operators must select a 
seed among them. In this paper, the algorithm of seed pixels automatic extraction 
based on PCNN successfully solves these problem of selecting seed pixels though 
ultrasonic images are badly degraded. 

5   Conclusion 

The disadvantage of Region Growing is that operator needs to select seed pixels 
manually. In order to extract useful regions, operators must select a seed among them. 
In this paper, an algorithm of seed pixels automatic extraction based on PCNN is 
proposed, which solves the problem of selecting seed pixels though ultrasonic images 
are badly degraded due to much noise. This is the successful application of PCNN for 
ultrasonic image detection. Medical images are characterized by complexity and 
variety, so the automatic detection algorithms for all kinds of medical images need to 
be researched further. 
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Abstract. Job shop scheduling problem has earned a reputation for being 
difficult to solve. Varieties of algorithms are employed to obtain optimal or near 
optimal schedules. Optimization algorithms provide optimal results if the 
problems to be solved are not large. But most scheduling problems are NP-hard, 
hence optimization algorithms are ruled out in practice. The quality of solutions 
using branch and bound algorithms depends upon the good bound that requires 
a substantial amount of computation. Local search-based heuristics are known 
to produce decent results in short running times, but they are susceptible to 
being stuck in local minima. Therefore, in this paper, we presented a brand-new 
heuristic approach for job shop scheduling. The performance of the proposed 
method was validated based on some benchmark problems of job shop 
scheduling, with regard to both solution quality and computational time. 

Keywords: Job shop scheduling; Heuristic algorithm; Simulated annealing 
algorithm; Production scheduling. 

1   Introduction 

In the production environment, scheduling allocates resources over time in order to 
perform a number of tasks. Typically, resources are limited and tasks are assigned to 
resources in a temporal order. The jobs are input to the scheduling engine of a 
production planning system. It determines the sequences and periods for processing 
jobs on dedicated machines. Jobs often follow technological constraints that define a 
certain type of shop floor. Typically, the objectives are the reduction of makespan of 
an entire production program, the minimization of mean tardiness, the maximization 
of machine load or some criteria [1,2]. Within the great variety of production 
scheduling problems, the general job shop problem is probably the most studied one 
during the last decade. It illustrates some of the demands required by a wide range of 
real-world problems. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 A Novel Heuristic Approach for Job Shop Scheduling Problem 253 

The classical job shop problem can be stated as follows: there are m different 
machines and n different jobs to be scheduled. Each job is composed of a set of 
operations and the operation order on machines is pre-specified. Each operation is 
characterized by the required machine and the fixed processing time. The objective is 
to determine the operation sequences on the machines in order to minimize the 
makespan, i.e., the time required to complete all jobs [3-5]. 

There are many researches focused upon the development of exact methods to 
solve relatively small scheduling problems. Several heuristics have also been 
developed to solve larger, more practical, job shop scheduling problems [6]. Priority 
based rules and heuristics were some of the earliest techniques that were developed. 
More recent works included the development of heuristic approaches that provided 
improved solutions. One such method is shifting bottleneck heuristic [7-9]. This 
heuristic has been prominently documented as a high quality job shop scheduling 
method. Shifting Bottleneck Heuristic (SBH) attempts to minimize the makespan of 
jobs. SBH employs disjunctive arc graphs where the disjunctive arcs represent 
constraints that occur in scheduling. SBH handles the scheduling problem one 
machine at a time. Each one machine-scheduling problem is iteratively solved until 
one machine with the maximum lateness is identified as the bottleneck. This 
bottleneck is sequenced to minimize the maximum lateness. The process continues 
with additional iterations until all machines have been scheduled [10-13]. With some 
iterative search, enumeration, and comparison process, the computational effort using 
the SBH in solving job shop scheduling problem may be substantial. Furthermore the 
quality of solution obtained by SBH is not guaranteed. There clearly exist tradeoffs 
among computational time and solution quality. Thus, it is desirable to design a 
scheduling method that can yield high quality solutions with less computational time. 

In this paper, we presented a brand-new heuristic approach. It evaluates machine 
availability and job requirements at each incremental point in a time horizon. A 
sequence matrix (indicating the routing of each job through its processing machine) 
and a process time matrix (for each job at each machine in its routing sequence) are 
utilized in determining the candidate jobs for scheduling. If more than one candidate 
job is available, the processing time matrix is partitioned and computations are 
performed to determine which job to schedule next. The new approach is derived 
from a classical scheduling approach. 

2   A Classical Scheduling Approach 

A scheduling concept proven useful in solving scheduling problems, in there, 
makespan is the performance measure, is proposed by Johnson [14]. This method was 
presented for minimizing the makespan in a two-machine flow shop scheduling 
problem. In Johnson's problem, there are n jobs, which must go through one machine 
and then through a second machine of a flow shop. Only one job can be processed on 
one machine at a given time. He denoted Ai as the processing time of the ith job on the 
first machine and Bi the corresponding time on the second machine. The objective is 
to the makespan. 

Johnson proved a schedule with a minimum makespan resulted if the jobs were 
sequenced by the following rules [14]: 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



254 Y.-M. Wang et al. 

1) Consider all jobs Ai and Bi for i=1, 2,…，n. 
2) Identify the minimum processing time among all Ai’s and Bi ’s. If this time is 

on the first machine (i.e. Ai) then schedule job i first. If the time is on the second 
machine (i.e. Bi) ，schedule job i at last. 

3) Eliminate scheduled jobs from further consideration. Repeat step 2 until all 
jobs are scheduled, working from both ends toward the middle. 

4) If a tie exists in the minimum tunes between Ai and Bi or Ai and Bj then 
schedule job i. 

There are fundamental differences exist between flow shop and job shop scheduling 
problems. However, Johnson's work provides an important reference in the develop- 
ment of a new job shop scheduling heuristic. In the follows, a novel heuristic approach 
(NHA) has been developed for job shop scheduling. This scheduling approach employs 
a concept similar to Johnson's rules in its job sequencing strategy. 

3   The Novel Heuristic Approach for Job Shop Scheduling 

A job shop scheduling problem with n jobs and m machines can be described by the 
following two matrices: 

1) A sequence matrix S indicating the operation routing of each job. 
2) A processing time matrix P showing the processing times for each job at each 

            operation in it's routing sequence. 
 

 
 

   

The new heuristic is designed to construct a schedule by applying decision criteria 
to a partitioned processing time matrix for the selection among the particular jobs in 
contention for a particular resource at a particular time. If no contention exists among 
jobs at a particular instant, the heuristic schedules the only available candidate. When 
determining the next job to schedule among multiple contending candidates, job-
scheduling priority is resolved through the use of a partitioned processing time 
submatrix [X|Y]. This partitioned submatrix is established according to the following 
method. 

For each row (job i)，the processing time can be computed as 

Sequence matrix S Processing time matrix P 
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Similarly, the sum of the processing times of all operations at each column, can be 
computed as 
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And the total processing times for all columns is 
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If the total processing time was equally balanced in two elements (B1 and B2), each 
element could be defined as: 

B1=B2=TR/2 (5) 

Applying the element B1, the original processing time matrix P can be partitioned 
as shown below: 

Let Dj represent the following differences: 

D1=B1-C1   for j=1. 
and                            Dj=D j-1-Cj   for j=2,3, …，m. 

(6) 

The residual for column r-1(i.e.,Dr-1) can be applied to partition P when Dr-1≤Cr. 
By letting Dp=Dr-1/Cr and by restricting Dp to the range 0≤Dp≤1 for values of r 

ranging 1<r<m ,the fractional value, Dp，can be used in partitioning decisions. By 
selecting column r as the partitioning column, the original processing time matrix P is 
partitioned as [X|Y] for each job i: 
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and 

∑
+=

+−=
m

rj
ijirpi ppDY

1

))(1(  (8) 

This submatrix of partitioned processing times for the jobs is structured as an h-job 
(1<h≤n) two-machine problem similar to those addressed in Johnson's research  
[15-17]. According to Johnson's method scheduling decisions are made on the basis of 
the shortest processing time in each machine. Jobs with processing times of shortest 
duration at machine one are scheduled firstly; those jobs with short processing time 
duration at machine two are scheduled at last. This scheduling strategy has been 
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shown by Johnson to produce the optimal makespan for two-machine flow shop 
problems. As such, a strategy similar to Johnson's rule has been incorporated, in 
various forms, into scheduling heuristics for a variety of problem types. 

Extending this rationale to the partitioned processing times submatrix provides the 
following procedure for determining which job should be scheduled at a particular 
time t from among the h jobs in queue at this instant. The procedural steps are as 
listed as the following: 

Step 1: For each job i, determine mi=min{Xi, Yi}. 
Step 2: If for some job k, Xk=Yk=mk，go to step 4. 
Step 3: Let N={job| mi=Xi}, Let mN=min{mi}, for job i∈N, If there exists at least 

two jobs, say job r and job s, with mr=ms=mN, compute partitioned 
submatrix and go to step 4; Otherwise job k is scheduled next, where 
mk=mN . 

Step 4: Certain tie breaking and decision rules are employed in these instances 
noted in Steps 2 and 3. These rules are presented and discussed in 
literature [14], in this paper the random decision method is adopted. 

When one machine is available and more than one jobs that requires the machine is 
awaiting, the above decision method is invoked. 

Therefore, procedurally, the novel heuristic approach can be listed as the 
following: 

Resources 
Step 1: For machine j, check availability at the current time (i.e., at time=t). 
Step 2: If machine j is available, proceed to Jobs Step 1. 
Step 3: If machine j is unavailable and j<m, set j = j+l and return to Resources 

Step 1. 
Step 4: If machine j is unavailable and j=m (i.e., the last machine); advance time 

to t=t+1，set j =1; return to Resources Step l. 
Jobs 

Step 1: For machine j, check the status and precedence relationships of each job 
to eliminate inactive jobs and those jobs with unsatisfied precedence 
constraints from further consideration. 

Step 2: If no jobs are available to schedule at the current time machine j is idle. 
Return to Resources and consider the next available machine. 

Step 3: If only one job is available, then schedule this job. Return to Resources 
and consider the next available machine. 

Step 4: If two or more jobs are candidates, compute the partitioned processing 
time submatrix and apply a rule similar to Johnson's rule to schedule the 
appropriate job. Return to Resources module and consider the next 
available machine. 

Step 5: If all jobs have been scheduled, then terminate the process. Otherwise, 
advance time to t=t+l and return to the Resources module to consider 
resource at time t=t+l. 

When some operation is scheduled the processing time matrix P must be updated 
and the result is denoted by P′. 

For instance, if p21 is scheduled, we get P′ as the following:  
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And the next scheduling operation is selected based on P′, this repetition running 
until all the elements of P′ equal 0. This gives a termination condition to the novel 
heuristic approach. 

4   Experiments and Results 

Our experiments were conducted on a Dell personal computer, operating at 2.66G Hz. 
Since the SBH is a prominently documented and well-accepted performance standard 
for job shop scheduling method evaluation, it will be used as a benchmark reference 
in assessing the performance of the new heuristic approach. The makespan is an 
important performance measure in scheduling applications since a reduction in the 
makespan generally implies an increasing throughput and a reduction in machine idle 
time. Computational times are important considerations concerning the cost and 
practical application of the scheduling procedure. If the scheduling procedure requires 
an excessive amount of time and computing resources, its application may be limited 
to only rather small problems. Therefore, the new heuristic approach is validated with 
considering the quality of obtained makespan and computational time. 

From Table 1, we can see that NHA got 5 optimal scheduling results out of 7 
problems. In the LA10 and LA16, NHA got better outcomes than BNH. 
Computational times used to solve a particular instance by SBH were substantially 
longer than the time required by the NHA for the same problem, which can be seen 
from Table 2. To sum up, NHA outperform BNH, it can obtain better scheduling 
results with a less computational time. Fig. 1 and Fig. 2 are a benchmark problem 
instance and the Gantt chart of scheduling results scheduled by NHA.  

 
 
 

 

Fig. 1. The benchmark LA2 represented by S and P 

Sequence matrix S Processing time matrix P
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Fig. 2. The Gantt Chart of LA2’s scheduling results 

Table 1. The makspan comparison obtained by NHA and SBH 

Problem 
Name 

Jobs Machines The best 
known 
solution 

Makespan 
obtained by new 
heuristic 
approach 

Makespan 
obtained by 
shift bottleneck 
heuristic  

LA2(F1) 10 5 655 655 740 
LA5(F5) 10 5 593 593 632 
LA9(G4) 15 5 951 651 714 
LA10(G5) 15 5 958 973 1023 
LA16(A1) 10 10 945 982 996 
LA18(A3) 10 10 848 848 927 
LA25(B5) 15 10 977 977 1084 

Table 2. The computational time comparison consumed by NHA and SBH 

Problem 
Name 

Jobs  Machines The best 
known 
solution 

Computational 
time (and 
makespan) of 
new heuristic 
approach 

Computational 
time (and 
makespan) of 
shift bottleneck 
heuristic  

SWV3 20 10 1398 67s (1491) 91s (1797) 
SWV4 20 10 1483 52s (1562) 123s (1635) 
SWV6 20 15 1678 93s (1783) 182s (1825) 
SWV9 20 15 1663 104s (1722) 176s (1903) 
SWV10 50 10 1667 232s (1754) 483s (1966) 
SWV12 50 10 3003 289s (3177) 528s (3326) 
SWV15 50 10 2904 359s (3054) 497s (3420) 
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5   Conclusion 

Job shop scheduling problems belong to a class of problems, which are NP-Complete. 
As such, these types of problems are the most intractable to solve. In the passed 
decades, such as integer programming, branch and bound techniques and enumerative 
based methods have been applied to determine scheduling solutions. Unfortunately, 
even if possible solutions could be generated and evaluated at the rate of one per 
second, this method could still take centuries to solve problems involving five or 
more jobs with five or more machines. Heuristic approaches are known to produce 
good results in a acceptable running times. Therefore, in this paper, we presented a 
brand-new heuristic approach based on Johnson’s classical flow shop scheduling 
method for job shop scheduling. The performance of the proposed method was 
accessed based on some benchmark problems of job shop scheduling, with regard to 
both solution quality and computational time. The experiments results indicate that 
the presented new heuristic approach can produce higher quality solution with 
considerably less computational time when compared with the outcomes achieved by 
shifting bottleneck heuristic method. 
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Abstract. This paper presents a novel physically-based model for vir-
tual Chinese brush. Compared with previous works, the main advan-
tage of our method lies in the use of physically based modeling methods
that describe the behavior of the real brush’s deformation in terms of
the interaction of the external and internal forces with the virtual writ-
ing paper. Instead of simulating the brush using bristles, we use points
to simulate the whole brush bundle, which can drastically decrease the
complexity inherent in the conventional bristle-level approach. A spring
network is derived to calculate the physical deflection of brush according
to the force exerted on it. With this model, we can get a more effective
simulation of real brush painting.

1 Introduction

Chinese calligraphy was thought to be the highest and purest form of Chinese
painting, and Chinese have been painting with hair brushes and ink on paper
over two thousands years. Traditional Chinese hair brushes are made from animal
hairs and the ink are made from pine soot and animal glue. With the development
of modern computers, to design and develop a digital painting environment that
simulates Chinese brush has attracted a lot of researchers.

Chinese hair brush model includes a model for the ink and the paper,covers
the various stages of the brush going through a painting or calligraphy process
[2]. Some existing models for Chinese brush simulate the process of a traditional
brush moving. Because of the computational complexity and the randomness of
the brush dynamic variations, building an accurate model is a challenge. Other
models attempt to exploit a synthesize approach by using realistically Chinese
calligraphic writings simulate the different brush stroke detail and various brush
effect [1]. Obviously, the synthetic results depend on the library of realistic Chi-
nese calligraphic writings. In this paper we have only considered the purely
physically-based modeling techniques.

F.P. Preparata and Q. Fang (Eds.): FAW 2007, LNCS 4613, pp. 261–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.1 Related Work

Several physically-based 3D brush models have been proposed recently and we
will review only those are directly related to our work. The first purely physically
based 3D brush model was proposed by Saito [10]. Saito used energy optimiza-
tion to determine the brush deformation. His model accounted for brush stiffness,
friction and kinetic energy. However, the model cannot simulate brush spread-
ing. Wong et al. [1] modeled a calligraphy brush as an inverted cone, with some
ellipses to synthesize Chinese calligraphic writings. Since their model pay no at-
tention to the brush tip while drawing stroke, it fails to produce the biased-tip
strokes. Baxter et al. [5] modeled the western brush as spring-mass systems, but
the model was still lacking of the effect of brush spreading or splitting. Xu et al.
[2][3] presented a more complex geometry which can split into smaller tufts, but
the bulk of the brush must penetrate the paper in the drawing process, which
leads to unrealistic brush footprints. Chu and Tai [6][7][8] delivered a very con-
vincing model for Chinese calligraphy that included factors such as plasticity,
tip spreading, and pore resistance. Like Saito, Chu and Tai also used energy
optimization for the brush dynamics, but their approach had to solve a static
constrained minimization problem by using local sequential quadratic program-
ming(SQP). Although the method of SQP can avoid solving stiff differential
equations, it is still complex in computation due to the iterations of SQP. More-
over, In their design, Chu and Tai deal with the effect of split brush by applying
a method named the split map[7]. The advantage of split map is that many lines
or dots can be achieved by a single brush tuft. However, the method lacks variety
as expressive as a real brush due to the effect achieved relying on large amount
of map texture, and they did not describe how to generate enough map texture
to simulate the effect of split bristle as a real-life brush.

1.2 Contributions

Our aim is to provide a simple but efficient brush model for interactively creat-
ing oriental artworks with computer. Since a typical real brush may consist of
thousands or even tens of thousands of individual bristles, physically simulating
each and every bristle is not practical based on the present hardware capabil-
ity. Inspired by the fact that artists use real brush with elastic bristles to draw
strokes, and based on the physical characteristics of the motion of brush, we
convert simulating the complex physical deformation of bristles to simulating
the footprint variation of brush, since the final effect is determined by the latter.
For this purpose, we simplify the geometric representation of brush to be a col-
lection of points instead of hair threads and use it as the basic unit to construct
a 3D brush bundle. To better simulate the brush plasticity, we formulate the
brush dynamics as a set of energy function according to the force exerted on it.
A spring network is derived to calculate those energy functions. This method
significantly improves the brush’s appearance, producing the plastic effect of
brush that user expect. Considering the self-similar of the split brush cluster, we
propose a simple split algorithm. Since our method generate complex split brush
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bundle only by applying some affine transformations on a single brush bundle,
it can efficiently decrease the complexity of physical simulation.

2 Brush Geometry

Our brush geometry model (BGM) is inspired by Wong’s BGM [1]. Wong’s
BGM used an inverted cone approximately represented a normal state brush
bundle(see Fig.1a). Our BGM also uses an inverted cone to represent the initial
state of the brush bundle as shown in Fig.1b.

(a) (b)

Fig. 1. (a) H.T.F. Wong’s BGM. (b) our geometry model.

It should be noted that the main difference between our BGM and Wong’s
BGM lies in the composition of hairs. Wong’s BGM was composed of a bundle
of slant lines relative to the cone’s main axis(see Fig.1a)which started from hair
root(oi) to the tip. While our BGM is composed of a bundle of parallel lines
parallel to the cone’s main axis(see the red line in Fig.1b). In this way, we can
easily build the whole brush cone using a series of circles along the cone’s main
axis. And the tip of each piece of hair is determined by the root(oi). The length
of the piece of hair li can be got directly by model’s initialization, which does
not need additional computation of trigonometric function as Wong’s BGM did.
Given the height of the brush stem from the paper at any writing instance, the
height of the intersection of the brush bundle and the paper can be computed
as

Heightt = L − Pt.z (1)

where t=0,1,2... is the discretized instances of writing, L is the length of brush
bundle, Pt(x, y, z) is the coordinate of the footprint of brush stroke at instance t,
and we define Pt.z as the vertical distance from the root of brush bundle to the
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paper at instance t. Pt.z is obtained from an pressure-sensitive input device (e.g.
tablet) if it is an interactive drawing session; or it is specified in a file if it is an
off-line rendering session. Similar to a real brush, the hairs distribute uniformity
alone the radius. The density of hairs in the center area is much thicker than that
near the boundary. Crowded hairs are obviously found in the center, and loser
around the brush boundary. According to this role, we design a single circular
disk as shown in Fig.2. A 3D virtual brush in static state can be built using a

Fig. 2. The distribution of hair alone the radius

series of circular disks (in Fig.2) with different sizes, starting from the brush tip
to the brush root. Obviously, the smallest disk may only have one dot. However,
for hair brush, a small brush tip including only one dot does not have a practical
meaning. Our experiments show that the tip of the brush including four dots is
a minimum.

3 Brush Dynamics

Brush dynamic model describes the deformation of the brush bundle at every
instance of brush movement. In real-life Chinese calligraphy, a typical stroke
usually includes three stages: Qibi (press), Yunbi (move) and Tibi (lift). During
the different stage, the brush dynamic model should have the different footprint
when the brush is pressed onto or lifted from the paper.

Qibi. Fig3.(a) shows a horizontal stroke. As the artist writes the stroke, firstly
he presses the brush vertically against the paper until the brush tip reaches
the writing paper (see arrow A of Fig3.(b)). Starting from the moment when
the brush touched the paper, with the brush continually moving downward(i.e.,
brush only moves along z-axis), to the moment when the brush is beginning to
move on the paper surface (i.e. brush moves along x-axis or y-axis), is the stage
of Qibi.

During this stage, the brush is dipped with ink. The attractive force between
ink and hair molecules holds the hair together. Moreover, in real-life calligraphy
writing, usually only the tip of the brush is used to paint in the Qibi stage. Al-
though the force that the brush suffers in the stage is rather complex, such as the
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(a)
B

CA

(b)

Fig. 3. (a) A stroke generated by our model. (b) The moving direction of the brush
during a single stroke.

external pressure and the internal friction between wet bristles, the footprint in
a real-life writing process looks like a circular disk according to our observations.
Therefore, our brush model in Qibi stage is designed as a series of concentric
circular disks, which are laid to lap over each other onto the cross-sectional plane
(as shown in Fig.4. A). This simple representation is computationally efficient
and quite similar to the observed reality.

A B

Fig. 4. The dynamic deformation of our brush during the different stage of a single
stroke

Yunbi. The stage of Yunbi starts from which the artist drugs the brush along
the path of the stroke (see arrow B of Fig3.(b)). At the very beginning of the
stage, the artist will continually press the brush against the paper surface, as
far as the stroke width reaches certain value which the painter wants to stroke
to be.

During this stage, the brush suffers from the pressure and friction with the
paper, so that the brush will alter its shape from the invert cone to a bent
invert cone (see Fig.4 red line). Moreover, the pressure and the friction also
make the circles change as ellipses (see Fig.5. B). Here, we simulate the bent
brush through moving the circles with a horizontal displacement along x-axis
of the paper plane(see Fig.4 B). In order to maintain the smoothness of the
stroke boundaries, the displacement between two adjacent circle should meet
the constrain as follows

ri − ri−1�di�2(ri − ri−1) (2)
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A B

C D

Fig. 5. The dynamic deformation of our brush. A is the platform of our model. B illus-
trates brush anamorphosis from circle to ellipse. C illustrates the deformation during
the stage of Yunbi . D illustrates the brush deformation of split.

where di represent the displacement between the ith circle and the (i−1)th circle,
ri represents the radii of the ith circle, and ri−1 is the radii of the adjacent of
the ith circle nearer to the brush tip.

The major axis and minor axis of the ith ellipses can be computed by follow
equations

majoraxis(ui) = riku, minoraxis(vi) = rikv (3)

where ku are the deformation constant of major axis, and kv is the deformation
constant of minor axis. Typically, ku and kv are from 1.0 to 1.5 and from 1.0 to
0.5, respectively.

Tibi. The stage of Tibi describes the process that the brush was lifted from
the writing paper, which can be found at the end of the stroke (see arrow C of
Fig.3.(b)). During this stage, a moist brush is deformed. In order to return the
bent brush to its original shape, the flexible force has to overcome the resistance
of molecular friction. Due to the effect of this internal frication, the bent brush
does not entirety revert to its original shape. We formulate the energy function
based on the principle of conservation of energy when the brush was pressed or
lifted as follows:

Epress = Ebend + Efric (4)

Elift = Ebend − Efric (5)

Epress = Elift (6)

where Ebend is the brush bent energy, and Efric is the internal energy of molecu-
lar friction when the brush was pressed or lifted. Then, we deal with the problems
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by using a spring network to approximate the behavior of the deformations. We
use bend springs at each joint point between cone major axis and circles to model
the bending deformation of the brush. The relationship between the amount of
bent displacement and the spring force can be closely approximated by using
Hooke’s law [11]:

Fs = −Fx = −kx (7)

where Fs is the equal and opposite restoring force of the spring on the stretch
node, k is the spring constant, and x is the displacement of a node position under
the influence of a force Fx. Taking the definition of the Hooke’s law (Equation7)
into Equation 4 and 5, we thus have our energy functions as:

Epress = Ebend + Efric = −kbdi − kfdi (8)

Elift = Epress − Efric = −kbdi + kfdi (9)

where kb and kf are the bent spring constant and the internal friction constant,
di is the displacement of spring node between the ith circle and the (i − 1)th
circle. The value of di should satisfy the constraint of formula (2).

Split Algorithm. The effect of brush splitting results from the brush deforma-
tion, the decrease of the volume of the ink, and rapid moving of the brush. With
a single brush bundle, it is impossible to achieve the effect of brush splitting.
To deal with the problem, Xu [2] proposed a two-level hierarchical brush geom-
etry model. The main advantage of Xu’s model lies in modeling the complex
geometry of a realistic split brush as several similar cluster using the compara-
bility of the hair macros. We cope with the problem by using a similar approach,
with some necessary modifications due to a different primitive model adopted in
our framework. According to our geometry model, we use a simple algorithm to
achieve the splitting effect. Since the amount of ink plays an important role in
the process of brush splitting, we firstly set an initial ink value for entire brush
bundle(the ink model will be discussed in next section). For every instant t, we
check the decrease of the amount of ink and the deformation of the brush tip.
When the ellipse of the brush tip reaches its limit(ku = 1.5) and the amount
of ink reduce to a threshold, a new primitive brush generates. Then, we use
the affine transformations composing the parent brush bundle and the new sub-
brush bundle together. Each brush bundle can be classified as a collection of
vertices as shown in Fig.2. The split brush bundle can be made from the same
model which reduces the number of models that need to be generated. This is
helpful to build a complex model by a single model, as which allows Graphical
Processing Unit(GPU) to work on a smallest set of vertices at a time. Fig.5.
D shows a model with one parent brush bundle and two subbrush bundles. By
this method, with less than 6 subbrush bundles, we have not only modeled the
complex geometry of a split brush, but also diminish computation.

Ink model. The ink model describes the process of ink depositing in which
brush geometry model is instanced and transformed into a real screen presenta-
tion. During the painting process, the brush sweeps paper plane along a stroke
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path which transfers the brush footprint to the paper plane on each pass. To
simulate the decrease of the amount of the ink, we define a parameter ci (1.0-
0.0) for the ink consumption at unit interval of the brush bundle’s ith ellipse.
When the single brush bundle split into several bundle, each ellipse of the new
subbrush bundles have the same value as the ellipse on the same contour line of
main brush bundle. Therefore, the amount of the ink of ith ellipse at instant t,
i.e. ei,t, is

ei,t = 1 −
∑

j=1,...,t

ci,j . (10)

Suppose we are drawing a stroke, we want to have a brush that gradually adds
color so that each points of a footprint contributes a little more ink with what-
ever is currently in the image. To do so, We simulate the process using alpha
blending with OpenGL. The blending functions that use the source and the desti-
nation blending factor as GL SRC ALPHA and GL ON MINUS SRC ALPHA.
To avoid the alias brush shape, we vary the alphas across the brush to make the
brush add more of its ink in the middle and less on the edges. The process of the
ink deposition is optimized by GPU’s hardware implementation. As a result, the
CPU can offload the rendering processing to do physics simulation, and therefore
increase system performance.

4 Results

We have implemented a prototype system based on our brush model. Our system
was written in c++ using Microsoft Visual C++6.0. All graphical rendering
operations are accelerated by using OpenGL on the GPU. All experiments are
done on a 2GHZ Pentium 4 with NVIDIA GeForce FX 5200 display card, and
it runs in real-time at 60 frames per second.

Figures 6 and 7 show some sample calligraphy and strokes obtained using our
prototype system. A calligraphy horizontal stoke shown in Fig 6 (a) was written
with a dipped sufficiently ink brush. Fig 6 (b) and (c) illustrate the effect of
ink diffusion due to the decrease of the amount of ink and the amount of time
that the brush spent in contact with the paper. Fig 6 (d) illustrates the effect of
brush split generated by a dry and multi-tuft brush. Fig 7 shows a comparison
between a digitized real calligraphy sample and the imitation artwork created by
our prototype system. It proves that very realistic-looking calligraphy artwork
can be generated by our brush model.

5 Further Work

NPR. One of the most important motivations of this work is the hope to create
a system that will automatically paint or write Chinese brush strokes by sim-
ulating the artistic processes. Therefore, based on our brush model, developing
a Chinese-painting style non-photorealistic rending system will be one of the
major tasks in the near future.
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(a)
(b) (c)

(d)

Fig. 6. Sample calligraphy stoke from our prototype system. (a) A horizontal stroke
with full-inking. (b) A horizontal stroke with medium-inking. (c) Blade-like calligraphic
stroke with medium-inking. (d) Made with a drying splitting brush.

(a) (b)

Fig. 7. (a) Digitized image of a real art work. (b) The image generated by our prototype
system.

Better input device. In the current implementation, our prototype system
uses input file for specifying the brushes parameters, or uses mouse and keyboard
as input devices for manual painting. This can work fine for automatic painting,
but is not user friendly for real-time artist’s painting. For a real-time interactive
painting system, a user friendly input device as expressive as a real brush would
give significant improvement to the final appearance. We are exploring a pressure
sensitive touch pad and table brush. Other possible input devices include Wacom
6D Art Pen (see http://www.cgvisual.com/headlines/Moxi/
CGVheadlines Moxi p2.htm)

6 Conclusion

We have presented a novel model for virtual brushes that can produce the ef-
fects needed by the digital Chinese calligraphy. The model is very simple but
efficient. With the proposed model, realistic Chinese calligraphy artwork can be
generated effectively with direct manipulation. Major advantages of our model
over previous works are
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– We use a collection of points instead of hair threads as the basic unit to con-
struct a 3D brush bundle, so that we convert simulating the complex physical
deformation of bristles (as did in most previous models) to simulating the
footprint variation of brush, which can efficiently decrease the complexity of
physical simulation.

– We formulate the brush dynamics as a set of energy function according
to the force exerted on it. A spring network is derived to calculate those
energy function. This method significantly improves the brush’s appearance,
producing the plastic effect of brush that user expect.

Up to now, our research mainly focused on modeling a medium stiff hair brush,
it is expected that our model can also mimic other kinds of brushes by modifying
the bent spring parameter. Moreover, only a vertical brush dynamic model was
simulated presently. In order to simulate a hairy brush in Chinese painting, a
slant angle brush dynamic model should also be studied.

Acknowledgments. The work described in this paper was fully supported by
a grant from the Research Grants Council of the Hong Kong Special Adminis-
trative Region, China [Project No. CityU 121205]
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Abstract. We address the problem of segmenting a Chinese text into
words. In this paper, we propose a trigram model algorithm for segment-
ing a Chinese text. We also discuss why statistical language model is
appropriate to be applied to Chinese word segmentation and give an al-
gorithm for segmenting a Chinese text into words. In particular, we solve
the problem of searching which often leads to low performance brought
by trigram model. Finally, the issue of OOV word identification is dis-
cussed and merged to trigram model based method in order to improve
the accuracy of segmentation.

1 Introduction

In many applications of natural language processing, we intend to obtain and
analyze basic linguistic units, usually words. For example, counting and indexing
the frequency of every word is often used in information retrieval. For English
and other western languages, the segmentation of texts is not necessary at all.
Sentences in those languages are always naturally segmented into independent
words by using spaces and punctuations which are called word delimiters. But
for Asian languages like Chinese and Japanese, things are quite different. As an
ideographic, Chinese sentences are composed of characters without any spaces,
and even none of any punctuation exists in ancient Chinese texts. In Chinese
tradition, each character corresponds to a single syllable. Most words in all
modern varieties of Chinese are polysyllabic and thus they are usually made
up of two or more characters. Thus, Chinese word segmentation which is to
find word boundaries is a crucial task for applications in naturally language
processing like machine translation, information retrieval, etc.

Researches on Chinese word segmentation have been conducted for many
years. Many methods aiming to resolve the problem have been proposed. Gen-
erally, these can be classified into heuristic dictionary-based methods, statistical
machine learning methods, and hybrid methods. In some sense, these methods
are practical to segment Chinese texts. However, dictionary-based, statistical-
based approaches are both limited in the performance and suffer from some
innate difficulties. Hybrid approaches, although imperfect, outperform the two
traditional ones and have been applied more widely.

F.P. Preparata and Q. Fang (Eds.): FAW 2007, LNCS 4613, pp. 271–280, 2007.
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One of the most important difficulties is resolution of ambiguity. As a Chinese
character can occur in different word internal positions in different words, it is
often difficult to determine word boundaries in such conditions. To resolve this
problem, a lot of machine learning techniques have been applied. In this paper,
we propose an algorithm based on statistical language models, which is to col-
lect linguistic information in a statistical way so that to resolve the ambiguity
problem and improve higher accuracy compared with traditional methods. OOV
(out-of-vocabulary) word identification is another essential problem for Chinese
word segmentation. We combine N-gram model based approach with the linguis-
tic rules for OOV word identification. Our experimental results show that our
algorithm outperforms the traditional algorithms by dealing with the problem
of ambiguity and unknown word discovery effectively.

This paper is organized as follows. In the following section 2, we review tradi-
tional segmentation methods and related work. In section 3, we employ statistical
language models for Chinese word segmentation. In section 4, we discuss OOV
(out-of-vocabulary) word identification. Our experimental results and analysis
are presented in section 5. Finally, we give in section 6 a conclusion and future
work.

2 Traditional Segmentation Approaches and Related
Work

2.1 Dictionary-Based Approaches

The dictionary-based approaches are the most straightforward approaches for
Chinese segmentation. They segment Chinese sentences by matching words in a
large machine-readable dictionary.

Cheng, Young, and Wong[1] described a dictionary-based method. Given a
dictionary of frequently used Chinese words, an input string is compared with
words in the dictionary to find the one that matches the greatest number of
characters of the input. This is called the maximum forward match heuristic.
An alternative is to work backwards through the text, resulting in the maximum
backward match heuristic. Both methods will fail in some situations.

The dictionary-based approaches are weak in dealing with the new words
identification. New words, also called unknown words or OOV, are some words
that are not listed in the dictionary. Most new words are nouns and we will
discuss OOV problem in section 4.

2.2 Statistics-Based and Hybrid Approaches

The statistical-based approaches segment Chinese sentences using inherent sta-
tistical features of Chinese[2]. Training a large corpus of Chinese texts, the
statistical-based approaches capture the statistical relationships between char-
acters in the corpus. And then the texts are segmented according to the relation-
ships of adjacent characters. Different statistical features are opted in statistical
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approaches, such as relative frequency, document frequency, local frequency, en-
tropy, and mutual information.

The statistics-based approaches are weak in dealing with stop words. Stop
words are words that appear frequently in the corpus but they do not convey
any significant information to the document, for example, of, the, etc.

Any single approach will fail in some situations. So all the real Chinese word
segmentation systems are hybrid approaches in practice. The dictionary-based
approach and statistical-based approach will serve in different phases.

3 The Trigram Model Algorithm for Chinese Word
Segmentation

3.1 Statistical Language Model

A language model is a fundamental component of many natural language applica-
tions like statistical machine translation, automatic speech recognition, spelling
correction, handwriting recognition, augmentative communication, information
retrieval, etc. The main object of language modeling is to help improve the
performance of the natural language processing[3].

Basic language model is to compute the probability of a word sequence or
usually a sentence by computing every conditional probability of each word given
previous words and then multiplying hem together. A sequence of n words is
denoted as w1, w2, . . . , wn or wn

1 . For the joint probability of each word in a
sentence, we use P (w1, w2, . . . , wn) or P (wn

1 ). Then, using the chain rule of
probability, P (wn

1 ) can be formulated as follows[4]:

P (wn
1 ) = P (w1)P (w2 | w1)P (w3 | w1w2) · · · P (wn | w1 . . . wn−1) (1)

However, with limited corpus, it is too difficult to compute the exact probability
of any word given a long sequence of preceding words since language is so creative
and changeful that there are numerous possible n-grams given the last word.

According to the Markov assumption, this problem can be simplified to N-
grams models. N-gram models are word prediction probabilistic models, which
predict the next word of previous N-1 words instead of all the histories. Most
common N-grams are bigram, trigram, 4-gram models. In trigram models, in-
stead of computing P(departure | Rhett Bulter is back from London after a long),
we compute P(departure | a long). Generally, using N-gram models, the condi-
tional probability of the next word can be computed as follows:

P (wn | wn−1
1 ) ≈ P (wn | wn−1

n−N+1) (2)

A simple way to estimate the above equation is called maximum likelihood
estimation (MLE). We get the MLE estimate for the parameters of an N-gram
model by taking the counts from corpus. If C(w) is the number of times that w
occurs in the corpus, then:

P (wn | wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(3)
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3.2 Chinese Word Segmentation Using N-Gram Language Model

N-gram models can be utilized to find the best segmentation of a sentence. With
the aid of an n-gram model, the most probable segmentation w1, w2, . . . , wk of
a given Chinese sentence S = c1c2 . . . cm can be formulated as:

seg(S) =
arg max

S=w1w2···wk

k∏

i

P (wi|wi−1
i−N+1) (4)

Where P (wi|wi−1
i−N+1) denotes the language model probability of wi in sentence

S, denoted word sequence wi−N+1wi−N+2 . . . wi−1 is the context (or history) of
wi, and N is the order of the N-gram model in use. For the sake of accuracy,
trigram is chosen to calculate language model probability. And P (wi|wi−1

i−N+1)
in (4) becomes P (wiwi−2wi−1).

To segment a sentence S = c1c2 . . . cm into k words has Ck−1
n−1 different segmen-

tations. Considering k varies from 1 to m, the sentence S has total 2n−1 differ-
ent segmentations. We can not try all 2n−1 segmentations and calculate there
trigram language model probabilities to find out the best segmentation of S.
Actually only possible words in S are considered.

First, a dictionary-based word segmentation system is opted to segment the
unsegmented training corpus. An N-gram language models tool is implemented
to train trigram language parameters from training corpus. The output of train-
ing corpus is a table of trigram language model parameters, together with a
unigram table and a bigram one.

By extracting string from both unigram table and sentence S, we get possible
words table Tp. Mathematically, we can define possible words table Tp as:

Tp = {w|w ∈ unigram table ∧ w ∈ S} (5)

Where w in S denotes w is a consecutive substring of sentence S.
Only the words in table Tp are chosen to form S. To reduce the cost of search-

ing, S is cut into strings by punctuations before segmentation. And all the sep-
arated strings will segment separately.

Regarding some very long sentences, we still encounter severe searching prob-
lem. The searching problem is mainly caused by word overlaps. As many overlaps
among words exist in the vocabulary, words combined from possible characters
are various. Here, for a given sentence, we define none-overlapped and n(si).

Definition 1. s1s2 denotes the adjacent two parts in the sentence. s(f) and s(l)
are the first character and the last one in a consecutive substring. If s1(f)s2(l)
is not found in any word of the vocabulary, s1 and s2 are none-overlapped.

Definition 2. For a consecutive substring si of a sentence, the number of dif-
ferent possible segmentations using the words in the given vocabulary to consist
si is called n(si).

Given a sentence S which is composed of m none-overlapped parts, S = s1s2sm.
Therefore,

n(s) = n(s1)n(s2) · · ·n(sm) (6)
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From Equation (6), we found that n(s) is extremely large when m and every
single n(si) are relatively large numbers. Consequently we need search quite a
lot of times for possible combinations of word segmentation.

The characteristic of N-gram language model leads a simply way to solve the
problem. When the distance between two words in the substring is no less then
N, the probability of one word does not affect that of another. Assume sentence
S is made up of three none-overlapped parts, S = s1s2s3 , n(s2) = 1 and s2 has
no less than N-1 words. Therefore, the number of possible segmentations of S
is n(s) = n(s1)n(s3). In practice, however, we only need to n(s1) + n(s3) from
candidate segmentation lists. In this way, the complexity of our algorithm has
been greatly reduced.

3.3 The Algorithm of Training Corpus and Segmentation

Algorithm 1

Input Training samples (corpus)
sentence S (to be segmented)

Output Final segmented sentence S

1. Segment training corpus with basic dictionary-based approach;
2. Train segmented samples by 3-gram language model tool and output 1-

gram table, 2-gram table, 3-gram table;
3. Resegment the training samples: for every clause delimitated by punctua-

tions in the samples, segment it into m none-overlapped parts;
4. Segment every single part into a consecutive word string according to the

dictionary and find all possible word strings;
5. For every possible segmentation, compute the probability of N-gram lan-

guage model of the whole clause;
6. Search for the best segmentation with the maximum probability;
7. Output a newly constructed training corpus by collecting all the best seg-

mentation of all the sentences in the training samples;
8. If no improvement has been obtained, go to 9, else go to 2;
9. Redo step 3 and 6 by substituting the candidate sentence for the training

samples to segment it into a word string delimitated by spaces.

4 Identification of OOV Word

OOV Word Identification, also called new word discovery, is usually considered as
a separate issue in Chinese NLP research. Also there are many pragmatic methods
have been proposed, some of which have achieved state-of-the-art performance in
their experiments. OOV words can be categorized into four types: morphologically
derived words, factoids, named entities, and other unlisted words [5].
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4.1 Morphologically Derived Words, Factoids, and Name Entities

For morphologically derived words, there are five main categories each of which
has several subcategories.

– Affixation(Prefix and Suffix):
– Reduplication:
– Splitting:
– Merging:
– Directional and Resultative Compounding:

Most factoids are number related, others are foreign language related. Number
related factoids include mathematical numbers, data, time, duration, money,
phone number, measure, etc. Foreign language related factoids include English
words, E-mail, website, etc.

– Number related: , , 12:20, 700
– Foreign languagerelated: feeling, IBM,admin@hotmail.com,www.yahoo.co.jp

Name entities refer to Chinese person names, Foreign person names in Chinese,
location names, organization names, commodity names usually called brands, etc.

– Chinese person names:
– Foreign person names: , ,
– Location names: (Country), (City), (Street)
– Organization names: (Educational Orgnization), (Political

Orgnization), (Company)
– Brands: ,

4.2 Unlisted Words

Unlisted words are partly due to the limitation of the dictionary. Most unlisted
words are odd and infrequently used. However, there are several major causes
of unlisted words. Old Chinese, sometimes known as Archaic Chinese, are quite
different from modern Chinese in vocabulary and grammar. Some words can only
be found in historical literatures. A lot of Chinese words also come from these
Asian languages since Chinese characters are logograms used in writing Japanese,
sometimes Korean, and formerly Vietnamese. Some of these words deriving from
Japanese and Korean have been adopted by Chinese and widely used. Besides
Asian languages which Chinese has had a great influence on, Chinese has a large
quantity of subdivisions languages or dialects. There are seven main groups:
Mandarin(National standard Chinese),Wu, Cantonese, Min, Hakka, Xiang and
Gan. The majority of these dialects may not be intelligible for Mandarin users.

Terminologies are technical words used in a particular field, subject, science,
or art. A dictionary can hardly contains all the terms in all scientific, technical
or artistic fields. As language is so creative, there are many newly coined words
every day, particularly from internet.
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– Old Chinese words:
– Japanese words written in Chinese:
– Korean words written in Chinese:
– Cantonese:
– Terms:
– Internet words:

Other than above reasons, abbreviations are neglected by most scholars while
in most occasions abbreviations are regarded as unknown words, leading to seg-
mentation errors or translation errors as a consequence. Google online translation
system fail to recognize (PKU) as (Peking University) and translated
it into English as the North.

– Abbreviations:

5 Experiments and Results

5.1 Preparations

We are undertaking a research programme of machine translation. For our
Chinese-English machine translation system, the Chinese word segmentation
is one of the key components. The accuracy of Chinese word segmentation
greatly influences the quality of Chinese-English machine translation. Incor-
rect segmented sentences inevitably result in poor translation. Our experiment
data including training data and test data is partly from our newly constructed
Chinese-English parallel corpus for statistical Chinese-English machine transla-
tion. The parallel corpus contains 49,3632 Chinese-English sentence pairs. Ran-
domly we take out 6,1368 Chinese sentences as our training set, 5193 sentences
as test set. A research student major in Chinese language constructs a reference
to the test set. The definition of Chinese words and the standard of segmentation
vary in terms of specific purposes. In order to adapt to our machine translation
system, both the principle of Chinese language and the requirement of Chinese-
English translation are considered and merged into our standard. According to
PRC Guidelines, is a single word, while we divide it into three
words for it corresponds to three English words China, People’s,
Republic. We use SRLM as our N-gram language model tool for training cor-
pus. SRILM is the most widely used language model tool, with a collection of
C++ libraries, executable programs, and helper scripts designed to allow both
production of and experimentation with statistical language models for speech
recognition, machine translation and other NLP applications[6]. There are also
other language model tools for substitution, the CMU-Cambridge toolkit and
the HTK Lattice Toolkit, and more. We have also designed a language model
tool for our machine translation system. All these tools have successfully resolved
the problem of data sparseness.
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5.2 Results

The performance of our segmentation system is presented in Table 1 in terms of
Precision(P ), Recall(R) and F score in percentages.

Precision(P ) =
number of correct segmentation points

total number of segmentation points by the system
(7)

Recall(R) =
number of correct segmentation points

total number of segmentation points in standard answer
(8)

F =
2 × P × R

P + R
(9)

Table 1. Comparison of some results among Dictionary Based Approach, N-gram
Based Approach and Manual Standard

Table 2. Comparison of Performance between Dictionary Based Approach and N-gram
Based Approach

P R F

DIC BASED 0.937 0.946 0.941

N-GRAM BASED 0.958 0.956 0.957

Improvement 2.24% 1.06% 1.70%
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5.3 Analysis

Many errors are caused by word overlap and other more errors caused by dic-
tionary based approach are due to the lack of OOV identification. Many names
cannot be well recognized like , , . Sometimes it fails to recog-
nize numbers and split numbers into halves. In table 2, we can see is
segmented into two words and . According to the rules of discovering
morphologically derived words, we take and as instances of affixation.
However, N-gram based approach cannot indentify as a whole name, which
is an instances of affixation as well. Besides this kind of errors, N-gram based
approach seems oversensitive for new word discovery. Most new words are well
recognized, but quite a few new words are created by merging words in a phrase
into one single word. The main side-effect of N-gram based approach is that
the component of OOV identification may found new words and add the new
words into the uni-gram table every time the iteration going from step 7 back to
step 7 in the algorithm of segmentation. Since some new words are coined incor-
rectly, these errors may lead to more so-called new words by merging adjacent
characters or words based on linguistic rules.

6 Conclusion and Future Work

Combined with the rules for OOV identification, trigram language model based
method can solve both the two major problems: the resolution of ambiguity
and the identification of OOV words. By computing the probability of trigram
language model, a sentence can be measured whether it is good or bad in terms
of related linguistic grammars and vocabulary. Hence, trigram models are also
able to measure whether a Chinese sentence is well segmented. In this paper,
we have an in-depth study for the causes of OOV words and construct relevant
rules for discovering new words. Names and numbers can be well recognized. But
our system seems oversensitive for OOV word identification. In the future, we
are going to improve the algorithm of language model training and the strategy
for OOV word identification by overcoming the defects mentioned above. To
compare our performance against other more systems in a more comprehensive
way, we will participate in the international Chinese word segmentation bake-off
and experiment with public database offered by the bake-off.
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Abstract. In this paper, we consider the recognition problem on a class
of perfectly orderable graphs, namely, the HHD-free graphs, i.e., graphs
that do not contain any induced subgraph isomorphic to a house, a hole,
or a domino. We prove properties of the HHD-free graphs which enable us
to present an O(n m)-time and O(n+m)-space algorithm for determining
whether a given graph G on n vertices and m edges is HHD-free. The
algorithm can be augmented to provide a certificate (an induced house,
hole, or domino) whenever it decides that the input graph is not HHD-
free; the certificate computation requires O(n + m) additional time and
O(n) space.

Keywords: HHD-free graphs, perfectly orderable graphs, certifying al-
gorithms, recognition.

1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph
(G, ≺) contains no induced P4 abcd with a ≺ b and d ≺ c (such a P4 is called
an obstruction). In the early 1980s, Chvátal [2] defined the class of graphs that
admit a perfect order and called them perfectly orderable graphs. The interest in
perfectly orderable graphs comes from the fact that several problems in graph
theory, which are NP-complete in general graphs, have polynomial-time solu-
tions in graphs that admit a perfect order [1,5]; unfortunately, it is NP-complete
to decide whether a graph admits a perfect order [11]. Since the recognition of
perfectly orderable graphs is NP-complete, we are interested in characterizing
graphs which form polynomially recognizable subclasses of perfectly orderable
graphs. Many such classes of graphs, with very interesting structural and algo-
rithmic properties, have been defined so far and shown to admit polynomial-time
recognitions (see [1,5]); note however that not all subclasses of perfectly order-
able graphs admit polynomial-time recognition [7].

� This research was co-funded by the European Union in the framework of the program
“Pythagoras II” of the “Operational Program for Education and Initial Vocational
Training” of the 3rd Community Support Framework of the Hellenic Ministry of
Education, funded by national sources and the European Social Fund (ESF).
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house hole domino P A building

Fig. 1. Some simple graphs

In this paper, we consider the class of HHD-free graphs: a graph is HHD-free if it
contains no induced subgraph isomorphic to a house, a hole (i.e., a chordless cycle
on ≥ 5 vertices), or a domino (see Figure 1). The HHD-free graphs properly gener-
alize the class of chordal (or triangulated) graphs [5]. In [8], Hoàng and Khouzam
proved that the HHD-free graphs admit a perfect order, and thus are perfectly
orderable. A superclass of the HHD-free graphs, which also properly generalizes
the class of chordal graphs, is the class of HH-free graphs: a graph is HH-free if it
contains no induced subgraph isomorphic to a house or a hole. Although an HH-
free graph is not necessarily perfectly orderable, the complement of any HH-free
graph is; this was conjectured by Chvátal and proved by Hayward [6].

Hoàng and Khouzam [8], while studying the class of brittle graphs (a well-
known class of perfectly orderable graphs which contains the HHD-free graphs),
showed that HHD-free graphs can be recognized in O(n4) time, where n denotes
the number of vertices of the input graph. An improved result was obtained by
Hoàng and Sritharan [9] who presented an O(n3)-time algorithm for recognizing
HH-free graphs and showed that HHD-free graphs can be recognized in O(n3)
time as well; their algorithm processes each vertex v of the input graph by
computing the chordal completion of the (ordered) non-neighbors of v, and by
checking whether the resulting graph is chordal. A further improvement was
achieved by Nikolopoulos and Palios [13]: based on properties characterizing the
chordal completion of a graph, they were able to avoid performing the chordal
completion step, which is the most time-consuming ingredient of the algorithm
in [9], and described algorithms for recognizing HH-free and HHD-free graphs
that require O(n min{m α(n, n), m + n log n}) time and O(n + m)-space, where
m is the number of edges of the input graph, and α( , ) denotes the very slowly
growing functional inverse of Ackerman’s function.

On other related classes of perfectly orderable graphs, Eschen et al. [4] recently
described recognition algorithms for several of them, among which a recognition
algorithm for HHP-free graphs; a graph is HHP-free if it contains no hole, no
house, and no “P” as induced subgraphs (see Figure 1). Their algorithm is based
on the property that every HHP-free graph is HHDA-free graph (a graph with
no induced hole, house, domino, or “A”), and thus a graph G is HHP-free graph
if and only if G is HHDA-free and contains no “P” as an induced subgraph. The
characterization of HHDA-free graphs due to Olariu [15] (a graph G is HHDA-
free if and only if every induced subgraph of G either is chordal or contains a
non-trivial module) and the use of modular decomposition [10] allowed Eschen
et al. to present an O(n m)-time recognition algorithm for HHP-free graphs.
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In this paper, we present a new, faster algorithm for recognizing HHD-free
graphs. For each vertex v of a given graph G, our algorithm computes the par-
tition of the non-neighbors of v into sets of vertices based on their common
neighbors with v, and following that, the connected components of the sub-
graphs induced by these partition sets. We show that if G is HHD-free, the
graph obtained from G by shrinking each of these connected components into
a single vertex is “almost chordal.” As a result, we obtain an O(n m)-time and
O(n + m)-space algorithm for determining whether a graph on n vertices and
m edges is HHD-free. We also describe how the algorithm can be augmented to
provide a certificate (an induced house, hole, or domino) whenever it decides that
the input graph is not HHD-free; the certificate computation requires O(n + m)
additional time and O(n) space.

2 Terminology - Notation

We consider finite undirected graphs with no loops or multiple edges. Let G be
such a graph; then, V (G) and E(G) denote the set of vertices and of edges of G
respectively. The subgraph of G induced by a subset S of G’s vertices is denoted
by G[S]. The vertices adjacent to a vertex x of G form the neighborhood N(x)
of x; the cardinality of N(x) is the degree of x. The closed neighborhood of x is
defined as N [x] := N(x) ∪ {x}. We extend the notion of the neighborhood to
sets as follows: for a set A ⊆ V (G), we define N(A) :=

(⋃
x∈A N(x)

)
− A and

N [A] := N(A) ∪ A.
A path in a graph G is a sequence of vertices v0v1 · · · vk such that vi−1vi ∈

E(G) for i = 1, 2, . . . , k; we say that this is a path from v0 to vk and that its
length is k. A path is called simple if none of its vertices occurs more than once;
it is called trivial if its length is equal to 0. A path (simple path) v0v1 · · · vk is
called a cycle (simple cycle) of length k + 1 if v0vk ∈ E(G). An edge connecting
two non-consecutive vertices in a simple path (cycle) is called a chord; then, a
simple path (cycle) v0v1 · · · vk of a graph G is chordless if G contains no chords of
the path (cycle), i.e., vivj /∈ E(G) for any two non-consecutive vertices vi, vj in
the path (cycle). The chordless path (chordless cycle, respectively) on n vertices
is commonly denoted by Pn (Cn, respectively).

A connected component of a graph G is a maximal set A ⊆ V (G) such that
the subgraph G[A] is connected, i.e., there exists a path in G connecting any
two vertices in A.

3 The Algorithm

In a fashion similar to the algorithms in [9,13], our algorithm processes each
vertex v of the input graph G and checks whether v participates in a hole, is
the top vertex of a house or a building (see Figure 1), or is a corner vertex of
a domino. Note that all these subgraphs include a path y1uvwy2 where y1, y2
are non-neighbors of v; it is interesting to observe that the vertices y1, y2 have
different common neighbors with v. This suggests that it may be a good idea to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



284 S.D. Nikolopoulos and L. Palios

v

N(v)

M(v)

G:

a b c

P
Q

R

v

N(v)
a b c

x y z

Fig. 2. Shrinking the partition sets into vertices may lead to error

partition the set of non-neighbors of v based on their common neighbors with
v, to shrink each of these partition sets into a single super-vertex, and then to
work with the resulting graph. This is reinforced by the following observation.

Observation 1. Let G be a graph, v a vertex of G, and y1, y2 be two non-
neighbors of v in G such that |N(y1)∩N(v)| = |N(y2)∩N(v)| and N(y1)∩N(v) �=
N(y2) ∩ N(v). If y1y2 ∈ E(G), then G contains an induced house or C5.

Proof. Since N(y1)∩N(v) �= N(y2)∩N(v) and |N(y1)∩N(v)| = |N(y2)∩N(v)|,
there exist vertices u, w ∈ N(v) such that u ∈ N(y1) − N(y2) and w ∈ N(y2) −
N(y1). But then, the vertices v, u, y1, y2, w induce a house or a C5 depending on
whether u, w are adjacent or not.

However, shrinking each of the different partition sets into a single vertex leads
to error as the following example indicates: consider the graph G on the left of
Figure 2 which contains no hole, house, or domino; the partition of the non-
neighbors of v based on the common neighbors with v yields the sets P, Q, R;
shrinking these sets into vertices x, y, z, respectively, yields the graph on the
right of Figure 2, which contains the hole vaxyzc.

A closer look at the example reveals that the error is due to the fact that the
two connected components of the subgraph G[Q] induced by the partition set Q
in Figure 2 were shrunk into the same vertex. This suggests that if we intend
to apply a shrinking mechanism, we need to treat the connected components of
the partition sets as separate entities. In detail, we do the following:

� consider the partition of the non-neighbors M(v) of vertex v in G based on
the common neighbors of the vertices in M(v) with v and let (S1, S2, . . . , S�)
be an ordering of the partition sets by non-decreasing number of such com-
mon neighbors;

� for each set Si, consider the connected components of the subgraph G[Si];
� we construct an auxiliary graph Gv by shrinking each of these connected

components into a single vertex: namely, for each i = 1, 2, . . . , �, we define

Zi = { zC1, zC2, . . . , zCti
} (1)
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where C1, C2, . . . , Cti are the conn. components of the subgraph G[Si]; then

V (Gv) = {v} ∪ N(v) ∪
(⋃�

i=1 Zi

)

E(Gv) = { u w | u, w ∈ {v} ∪ N(v) such that uw ∈ E(G) }
∪ { u zC | u ∈ N(v) and ∃ ux ∈ E(G), where

x ∈ a conn. component C of a G[Si] }
∪ { zC zC′ | ∃xy ∈ E(G), where

x, y ∈ conn. components C and C′ of G[Si] and G[Sj ], resp.,
and i �= j }.

Note that when a component C is shrunk into a vertex zC , then (i) zC is adjacent
to a vertex u ∈ N(v) iff there exists a vertex x ∈ C such that ux ∈ E(G), and
(ii) zC is adjacent to vertex zC′ corresponding to a component C′ �= C iff there
exist vertices x ∈ C and y ∈ C′ such that xy ∈ E(G). The following result has
important implications for the graph Gv.

Lemma 1. Let G be an HHD-free graph, v a vertex of G, and A, B, C connected
components of the subgraphs G[Si], G[Sj ], G[Sk] induced by three distinct parti-
tion sets Si, Sj , Sk, respectively, where i < j < k. Suppose further that there
exist non-neighbors x, x′, y, z of v in G, where x, x′ ∈ A, y ∈ B, z ∈ C, such
that xz ∈ E(G) and x′y ∈ E(G). Then, yz ∈ E(G).

In terms of the graph Gv, Lemma 1 implies the following corollary:

Corollary 1. Let G be an HHD-free graph, v a vertex of G, Gv the auxiliary
graph described earlier in terms of G and v, and zA, zB, zC be vertices of Gv

such that zA ∈ Zi, zB ∈ Zj, and zC ∈ Zk where i < j < k. If zAzB ∈ E(Gv)
and zAzC ∈ E(Gv), then zBzC ∈ E(Gv).

Lemma 1 and Corollary 1 prove very useful in the special case in which the
graph G is such that for every edge xy ∈ E(G), where x belongs to a connected
component A of a subgraph G[Si] and y belongs to a connected component B
of G[Sj ] with j > i, no vertex in A is adjacent to any vertex in Sj − B. In this
case, in the auxiliary graph Gv, for all 1 ≤ i < j ≤ �, any vertex in Zi (i.e.,
corresponding to a connected component of the subgraph G[Si]) is adjacent to at
most one vertex in each Zj (i.e., corresponding to a component of G[Sj ]). Then, if
G is HHD-free, Corollary 1 implies that the subgraph Gv[

⋃�
t=1 Zt] of Gv induced

by the non-neighbors of v is chordal, and hence no chordal completion is needed.
In general, however, G may have edges xy and x′z, where x, x′ belong to a
connected component of a subgraph G[Si] and y, z belong to distinct connected
components of G[Sj ] with j > i; then, we take advantage of the following lemma.

Lemma 2. Let G be an HHD-free graph, A a connected component of the sub-
graph G[Si], and B, B′ distinct connected components of G[Sj ], where j > i,
such that G contains edges connecting a vertex in A to a vertex in B, and a
vertex in A to a vertex in B′. Then:

(i) In G, each vertex in A that is adjacent to at least one vertex in B ∪ B′ is
adjacent to all the vertices in B ∪ B′.
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Fig. 3. The vertices in B ∪ B′ are not necessarily adjacent to all the vertices in A ∪ C

(ii) If C is a connected component of the subgraph G[Sk], where k > j, such that
G contains an edge connecting a vertex in B to a vertex in C. Then, in G,
each vertex in C that is adjacent to at least one vertex in B ∪ B′ is adjacent
to all the vertices in B ∪ B′.

It is worth noting that although in an HHD-free graph, each vertex in A ∪ C
that is adjacent to at least one vertex in B ∪B′ is in fact adjacent to each vertex
in B ∪B′, it is not necessarily true that each vertex in B ∪B′ is adjacent to each
vertex in A ∪ C; consider the HHD-free graph shown in Figure 3.

Lemma 2, statement (ii) implies that if in an HHD-free graph G there exist
edges connecting vertices of a connected component A of a subgraph G[Si] to
vertices in at least 2 connected components B1, B2, . . . , Bk of a subgraph G[Sj ]
where j > i, then the vertices in B1 ∪ B2 ∪ . . . ∪ Bk are adjacent to the exact
same neighbors in

(⋃�
r=j+1 Sr

)
; additionally, as the components B1, B2, . . . , Bk

are all subsets of Sj, the vertices in B1 ∪ B2 ∪ . . . ∪ Bk are adjacent to the same
vertices in N(v), and thus they are adjacent in G to the exact same neighbors
in

(⋃�
r=j+1 Sr

)
∪ N(v). In terms of the graph Gv, this implies that the vertices

zB1 , zB2 , . . . , zBk
corresponding to the connected components B1, B2, . . . , Bk of

G[Sj ] are adjacent to the exact same neighbors in
(⋃�

r=j+1 Zr

)
∪N(v). Moreover,

the transitivity of equality leads to the following corollary.

Corollary 2. Let G be an HHD-free graph, and A1, A2, . . . , Ah be connected
components of subgraphs G[Sr], where r < j, such that for each i = 1, 2, . . . , h,

– the graph G contains edges connecting vertices in at least 2 distinct compo-
nents of G[Sj ] to vertices in Ai, and
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– there exists a component B of G[Sj ] such that at least one vertex in Ai and
at least one vertex in

⋃i−1
t=1 N(At) are adjacent to a vertex in B.

(in terms of the graph Gv, for each i, we have that |NGv(zAi) ∩ Zj| ≥ 2 and(
NGv (zAi) ∩

(⋃i−1
t=1 NGv (zAt)

))
∩ Zj �= ∅). Then,

(i) in G, all the vertices in
⋃h

i=1

(
N(Ai) ∩ Sj

)
are adjacent to the exact same

neighbors in
(⋃�

r=j+1 Sr

)
∪ N(v);

(ii) in Gv, all the vertices in
⋃h

i=1

(
NGv(zAi) ∩ Zj

)
are adjacent to the exact

same neighbors in
(⋃�

r=j+1 Zr

)
∪ N(v).

In order to be able to check that case (ii) of Corollary 2 holds for the graph Gv, we
maintain a partition PZj of the vertices in Zj that correspond to the connected
components of the subgraph G[Sj ]: initially, each partition set contains a single
vertex of Zj ; every time we process a vertex zAi which is adjacent to vertices
zB1 , zB2 , . . . , zBt ∈ Zj , where t ≥ 2, we union the sets of the partition PZj that
contain the vertices zB1 , zB2 , . . . , zBt . Then, when we process the vertices in Zj ,
we check that the vertices in each partition set are adjacent to the exact same
neighbors in

(⋃�
r=j+1 Zr

)
∪ N(v).

Based on these results, in Figure 4 we give Algorithm Recognize-HHD-free, in
which, for each vertex v of the given graph G, we construct the auxiliary graph Gv

by shrinking each of the connected components of each of the subgraphs G[Si],
i = 1, 2, . . . , �, into a single vertex, and then, for each i = 1, 2, . . . , �, we process
the set Zi of vertices corresponding to the connected components of G[Si] to-
gether (note that, by construction, in the graph Gv there are no edges between
any two vertices zC , zC′ ∈ Zi). We also mention that Step 1.4 of our algorithm,
which is applied on Gv, is an extension of the linear-time algorithm for testing
whether an ordering of the vertices of a given graph is a perfect elimination
ordering [5,16].

We note that when we check that all the vertices in a set Pj are adjacent
to the same neighbors, we check only the neighbors in

⋃�
r=i+1 Zr, and not in

(⋃�
r=i+1 Zr

)
∪N(v) as suggested by Corollary 2, statement (ii); this is so, because

all the vertices in Pj correspond to connected components of the subgraph G[Si]
for the same set Si, and so, by construction, they have the same neighbors in
N(v). Additionally, when this check is successful, we take advantage of the fact
that all the vertices in Pj are adjacent to the same neighbors in

⋃�
r=i+1 Zr, when

we union the sets of the partition PZk
that contain the vertices in W ; we need

only do the unioning once for the entire set Pj rather than once for each vertex
in the set.

The correctness of the Algorithm Recognize-HHD-free is established in The-
orem 1 with the help of Lemma 3.

Lemma 3. Let G be a graph, v a vertex of G, Gv the auxiliary graph described
earlier in terms of G and v, and Zi (i = 1, 2, . . . , �) the sets of vertices of Gv

defined in Eqn. (1). Suppose that there exist vertices zA ∈ Zi and zA′ ∈ Zj of
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Algorithm Recognize-HHD-free

Input : an undirected graph G
Output : a message stating that G is HHD-free or not

1. for each vertex v of G do
1.1. Compute the neighbors N(v) and non-neighbors M(v) = V (G)− (N(v)∪{v})

of v in G;
compute the partition Sv of the set M(v) based on the common neighbors of
the vertices in M(v) with v in G, and order the partition sets by non-decreasing
number of such common neighbors; let Sv = (S1, S2, . . . , S�) be the resulting
ordering;

1.2. for each edge xy of G, where x, y ∈ M(v), do
if x, y belong to different partition sets of Sv

and |N(x) ∩ N(v)| = |N(y) ∩ N(v)|
then print(“The graph G is not HHD-free”); exit;

1.3. Construct the auxiliary graph Gv by shrinking each connected component C
of the subgraphs G[Si], i = 1, 2, . . . , �, into a single vertex zC ;

1.4. for i ← 1 to � do
form a partition PZi of the set Zi of vertices of Gv that correspond to
the connected components of G[Si], by placing each of these vertices in
a separate partition set;
for each vertex zC ∈ Zi do

associate with zC an initially empty set A(zC);
for i ← 1 to � do

let the partition PZi of Zi be PZi = {P1, P2, . . . , Pt};
for j ← 1 to t do

let zC be any vertex contained in the set Pj ;
X ′ ← NGv (zC) ∩

���
r=i+1 Zr

�
;

if Pj is not a singleton set
then if there exists a vertex in Pj that is not adjacent in Gv to a

vertex in X ′ or is adjacent to a vertex in
���

r=i+1 Zr

�
− X ′

then print(“The graph G is not HHD-free”); exit;
if X ′ �= ∅
then let Zk be the minimum-index set such that X ′ ∩ Zk �= ∅;

W ← X ′ ∩ Zk;
union the sets of the partition PZk (of Zk) that contain the
vertices in W ;
X ← X ′ ∪

�
NGv (zC) ∩ N(v)

�
;

choose any zB ∈ W and concatenate the set X − W to A(zB);
if

��
z∈Pj

A(z)
�

− NGv (zC) �= ∅
then print(“The graph G is not HHD-free”); exit;

2. print(“The graph G is HHD-free”);

Fig. 4. Algorithm Recognize-HHD-free

Gv corresponding to connected components A, A′ of subgraphs G[Si] and G[Sj ],
respectively, where i < j, such that zAzA′ ∈ E(Gv) and there exists a vertex x ∈
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(⋃�
r=j+1 Zr

)
∪ N(v) such that x ∈ NGv(zA) − NGv(zA′). Then if Algorithm

Recognize-HHD-free is run on G, it reports that G is not HHD-free and stops.

Theorem 1. When Algorithm Recognize-HHD-free is run on a graph G, it re-
ports that G is not HHD-free if and only if G is indeed not HHD-free.

Remark
We note that in the course of Algorithm Recognize-HHD-free we do not check
whether the conditions of Lemma 2, statement (i), hold, although we know that
if they do not hold then the input graph G is not HHD-free. In fact, we do not
check the conditions of Lemma 2, statement (ii), either; instead, we check the
weaker conditions stated in Corollary 2. Nevertheless, the conditions that we
check suffice to enable us to recognize HHD-free graphs.

3.1 Time and Space Complexity

Let n be the number of vertices and m be the number of edges of the graph G.
Since each of the forbidden subgraphs that we are looking for (a house, a hole,
or a domino) is connected, we may assume that G is connected, otherwise we
work on G’s connected components which we can compute in O(n+m) time [3];
thus, n = O(m). Below, we give the time and space complexity of each step of
Algorithm Recognize-HHD-free.

For a vertex v, its neighbors and non-neighbors in the graph G can be stored in
O(n)-size arrays for constant-time access; this takes O(n) time. The partition Sv

can be computed in O(m + n deg(v)) time time and O(n) space, where deg(v)
denotes the degree of v in G; see [12]1. After having computed for a vertex of each
of the partition sets of Sv, the number of its common neighbors with v, which can
be done in O(n + m) time, we can form the ordered sequence (S1, S2, . . . , S�) in
O(� + deg(v)) = O(n) time and O(n) space using bucket sorting. Thus, Step 1.1
takes O(m + n deg(v)) time and O(n) space in total.

Step 1.2 takes O(m) time assuming that each non-neighbor of vertex v stores
the index of the set of the partition Sv to which it belongs; storing this infor-
mation on each such vertex can be done in O(n) time by traversing the sets
S1, S2, . . . , S�. Thus, Step 1.2 takes O(n + m) time and O(n) space.

Adjacency-list representations of the subgraphs G[Si], i = 1, 2, . . . , �, can be
obtained in O(n+m) time and space by appropriate partitioning of a copy of an
adjacency-list representation of the graph G and removal of unneeded records;
then, computing the connected components of all these subgraphs takes a total
of O(n + m) time and space, from which the graph Gv can be constructed in
O(n + m) additional time and space. Thus, Step 1.3 takes a total of O(n + m)
time and space.

1 An algorithm to construct a partition of a set L2 in terms of adjacency to elements of
a set L1 is given in Section 3.2 of [12] with a stated time complexity of O(m+n |L2|);
yet, it can be easily seen that the algorithm has a time complexity of O(m+|L1|·|L2 |),
which in our case gives O(m + n deg(v)) since |L1| = deg(v) and |L2| = O(n).
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Crucial for Step 1.4 is the construction and processing of the partitions PZi ,
i = 1, 2, . . . , �. These are maintained by means of an auxiliary (multi-)graph Hv:
members of the same partition set belong to the same connected component
of Hv. The graph Hv has one vertex for each connected component of each
subgraph G[Si], i = 1, 2, . . . , �; hence, with a slight abuse of notation, we can
write that V (Hv) =

⋃�
i=1 Zi. Initially, the graph Hv has no edges.

� In order to compute the partition PZi of the set Zi, we compute the con-
nected components of the subgraph Hv[Zi]; graph traversing algorithms,
such as, depth-first search and breadth-first search, can be used on Hv[Zi]
to yield the connected components in time linear in the number of vertices
and edges of Hv[Zi].

� In order to union the sets of a partition PZk
that contain the vertices in a

set W , we pick a vertex, say, z ∈ W , and add edges in Hv connecting z to
all the other vertices in W ; this takes O(|W |) time and space.

The above description implies that forming the initial partitions PZi for i =
1, 2, . . . , �, where each vertex in Zi is placed in a separate partition set, corre-
sponds to constructing the graph Hv without any edges; this can be done in
O(n) time and space. Initializing the sets A( ) for all the vertices in

⋃�
i=1 Zi

also takes O(n) time and space. Now, for each i = 1, 2, . . . , �, computing the
partition PZi takes time linear in the number of vertices and edges of Hv[Zi].
Let us consider the processing of a set Pj of the partition PZi . Computing the
set X ′ takes O(degGv (zC)) time and space, where degGv(zC) denotes the degree
of vertex zC in the graph Gv. Checking if Pj is a singleton set takes O(1) time,
and checking if all the vertices in Pj are adjacent to exactly the vertices in X ′

among the vertices in
⋃�

i=i+1 Zi takes O(
∑

z∈Pj
degGv(z)) time. Next, check-

ing whether X ′ is non-empty takes O(1) time while doing all the processing if
X ′ �= ∅ takes O(degGv (zC)) time and space; note that |W | ≤ |X ′| ≤ degGv(zc)
and recall that unioning the sets of the partition PZk

that contain the ver-
tices in W involves adding |W | − 1 edges in Hv. Finally, checking whether(⋃

z∈Pj
A(z)

)
−NGv(zC) �= ∅ takes O

(⋃
z∈Pj

|A(z)|
)

time. In summary, process-
ing the set Pj takes O

(∑
z∈Pj

(
degGv(z)+|A(z)|

))
time and O(degGv (zC)) space.

Since the sets of each partition PZi of the set Zi are disjoint and the sets Zi

are disjoint, we have that O
(∑�

i=1
∑

Pj∈PZi

∑
z∈Pj

degGv(z)
)

= O
(
|V (Gv)| +

|E(Gv)|
)

= O(n + m). Additionally, since the sets A( ) are formed by concate-
nating some of the neighbors in Gv of one vertex zC from each set Pj , we have
that O

(∑�
i=1

∑
Pj∈PZi

∑
z∈Pj

|A(z)|
)

= O
(∑�

i=1
∑

Pj∈PZi

∑
z∈Pj

degGv(z)
)

=
O

(
|V (Gv)|+|E(Gv)|

)
= O(n+m) as well. Thus, in total, Step 1.4 takes O(n+m)

time and space.
Since Steps 1.1-1.4 are executed for each vertex v of the input graph G and

Step 2 takes O(1) time, we have that the overall time complexity of Algorithm
Recognize-HHD-free is:

[ ∑

v∈V (G)

(
O(m + n deg(v))

)
+ O(n + m)

]
+ O(1) = O(n m).
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Therefore, we have:

Theorem 2. Let G be an undirected graph on n vertices and m edges. Then,
Algorithm Recognize-HHD-free determines whether G is an HHD-free graph in
O(nm) time and O(n + m) space.

3.2 Providing a Certificate

Algorithm Recognize-HHD-free can be made to provide a certificate (a house, a
hole, or a domino) whenever it decides that the input graph G is not HHD-free.
The algorithm reports that the graph G is not HHD-free in three occasions, once
in Step 1.2 and twice in Step 1.4. Next, we give some of the details of how we
handle these cases.

Step 1.2 : In this case, we have two non-neighbors x, y of v which have the same
number of common neighbors with v and belong to different partition sets. Then,
there exist vertices u ∈ (N(x)∩N(v))−N(y) and w ∈ (N(y)∩N(v))−N(x); we
can find these vertices in O(n) time using O(n) space by traversing the adjacency
lists of x and of y and marking the neighbors of x and y in two O(n)-size arrays,
and then by traversing these two arrays. The vertices v, u, w, x, y induce a house
or a C5 depending on whether u, w are adjacent in G or not.

Step 1.4 : In order to be able to efficiently produce a certificate when Algorithm
Recognize-HHD-free reports that the input graph G is not HHD-free in Step 1.4,
we do the following additional work:

W1: Whenever, during the processing of a set Pj of a partition PZi , we need to
union the sets of a partition PZk

containing the vertices in the set W , which
is done by adding edges in the auxiliary multi-graph Hv (as explained in
Section 3.1), we associate with each such edge the selected vertex zC of Pj .

W2: When processing a set Pj , we store with each element of the set X − W ,
which is added to A(zB) for zB ∈ W , a reference to the selected vertex zC

of Pj ; in this way, for each vertex z, each element of the set A(z) carries a
reference to a vertex of the set during whose processing this element was
added to A(z).

Note that this additional work does not increase asymptotically the time and
space complexity of the algorithm. Moreover, thanks to this work, we can pro-
duce a certificate whenever Algorithm Recognize-HHD-free reports in Step 1.4
that the graph G is not HHD-free in O(n+m) additional time using O(n) addi-
tional space (due to space limitation, the details are omitted but can be found
in [14]). Thus, we have:

Theorem 3. Let G be an undirected graph on n vertices and m edges. Then,
Algorithm Recognize-HHD-free can be augmented to produce a house, a hole, or
a domino whenever it decides that G is not an HHD-free graph in O(n + m)
additional time and O(n) additional space.
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4 Concluding Remarks

We have presented a recognition algorithm for the class of HHD-free graphs
that runs in O(n m) time and requires O(n + m) space, where n is the number
of vertices and m is the number of edges of the input graph. The algorithm can
be augmented to yield, in O(n + m) time and O(n) space, a certificate (a house,
a hole, or a domino) whenever it decides that the input graph is not HHD-free.

Despite the close relation between HHD-free and HH-free graphs, our results
do not lead to an improvement in the recognition time complexity for HH-free
graphs; therefore, we leave as an open problem the design of an O(n m)-time
algorithm for recognizing HH-free graphs. Additionally, it would be interesting
to obtain faster recognition algorithms for other related classes of graphs, such
as, the brittle and the semi-simplicial graphs.
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7. Hoàng, C.T.: On the complexity of recognizing a class of perfectly orderable graphs.

Discrete Appl. Math. 66, 219–226 (1996)
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Abstract. This article concentrates on classes of graphs containing large grids 
and having a very regular structure. Grid-structured hierarchical graphs are 
defined in [19] by giving a static graph defining the content of a cell of a d-
dimensional grid, repeating this static graph in each cell and by connecting the 
vertices in cells of a local neighborhood corresponding to a finite transit 
function in a uniform way. It is shown that for each finitely represented class K 
of dynamic graphs all monotone graph properties and all first order (FO) 
problems can be solved in constant time O(1). This result improves the linear 
time computability of FO problems for graphs of bounded degree from [25]. 

Keywords: grid structured hierarchical graphs, first order problems, monotone 
properties, constant time. 

1   Introduction 

Many algorithmic problems of practical or theoretical interest are NP hard and permit 
at least till now no efficient algorithmic solution. Usually one tries to get solutions in 
polynomial time by restricting the structure of the input objects. While on one side 
almost all problems for arbitrary graphs are NP-hard, they become usually solvable in 
polynomial or even linear time when the input structures are restricted to structures of 
bounded width (band-width, tree-width, VF tree-width, strong tree-width, branch-
width, path-width, clique-width, rank-width, cut-width, see [2], [14] for surveys on 
recent developments). For all these width-concepts large grids imply high width. 
More precisely let K be a class of graphs having arbitrary large grids (see below) as 
minors then the X-width of K is not bounded, where X is an arbitrary width-concept 
mentioned above. So it can not be expected that the ideas and concepts to prove that a 
large class of algorithmic problems can be solved in polynomial or even in linear time 
for graphs of bounded X-width work also for classes of graphs containing arbitrary 
large grids. In the contrary the containment of large grids often indicates high 
complexity of many problems, e.g. by coding tiling problems in a canonical way (see 
[23] or [14]).   

But grids appear very often in many areas of application, e.g. in VLSI circuits (see 
e.g. [21]), in the process of adaptive grid refinement required for given accuracy of 
the numerical solution of partial differential equations (see [22]), and picture 
processing. Though grids can not be avoided in many applications, the input 
structures in applications are often not arbitrary – they result by using special repeated 
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operations of an engineering process or they posses many similar parts. Key examples 
are memory units, gate arrays, customized circuits and reusable software components.  

We will concentrate here on graphs containing large grids but having a very 
regular, hierarchical structure. This regularity will be used to show that each problem 
definable in first order logic (FO logic) for such graphs is decidable in constant time 
(O(1)). This improves for these structures the results that FO problems for arbitrary 
graphs are in P and can be solved in logarithmic space ([16]) and that FO problems 
for graphs of bounded degree or locally bounded tree-width are computable in linear 
time (see [25], [9]). Moreover we will show that each monotone property, i.e. a 
property which is closed under taking subgraphs can be solved in constant time for 
such classes of structures. 

The article is composed as follows. In section 2 grids and grid-structured 
hierarchical graphs are introduced and it is proved that all graph properties closed 
under taking substructures can be decided in constant time for each class of finitely 
represented grid structured graphs. Some tools from logic are introduced in section 3 
to show that each FO problem can be solved in constant time for each class of finitely 
represented grid structured graphs. The article ends with some conclusions and open 
problems in section 4. 

2   Grid Structured Graphs 

Throughout the paper the following notations and conventions will be used. N denotes 
the set of non negative integers (natural numbers) and i, j, k, l, m, n are used to denote 
elements of N. For each natural number n we use n also as an abbreviation for the set 
{0,1, … ,n-1}. The cardinality of a set X, i.e. the number of its elements is denoted as 
|X|. In the article we use standard terminology of graph theory, logic and 
computational complexity as it can be found in [4], [23], [6] or [5].  

A simple graph G := (V, E) with n vertices and m edges consists of a vertex set V 
:= V(G) = {v1, … ,vn} and an edge set E := E(G) = {e1, … ,em}, where each edge is an 
unordered pair of (different) vertices. We write uv for the edge {u,v} and say that u 
and v are adjacent, when uv ∈ E(G). Remember, that in this interpretation uv = vu. In 
this case the vertices u and v are denoted the endpoints of the edge e = uv. All graphs 
are assumed to be finite. Exceptions of this rule are given explicitly. Let n, m > 0 be 
arbitrary natural numbers. The n×m-grid Qn,m (sometimes denoted also as solid n×m-
grid) is the graph defined by V(Qn,m) := {(i, j) : 0≤i<n and 0≤j<m} and E(Qn,m) := 
{{(i,j), (k,l)}: |i – k| + |j – l|= 1, 0≤ i,k< n 0 ≤ j, l < m }. For n=m we write simply Qn. 
Define the infinite grid Q∞,∞ := (V(Q∞,∞), E(Q∞,∞)) by V(Q∞,∞) = {(i, j) : i ∈ N and j ∈ 
N} and E(Q∞,∞) := {{(i,j), (k,l)}: |i – k| + |j – l| = 1 and i, ,j, k, l ∈∈ N }. We will use 
also the natural generalization of this concept from 2 to an arbitrary finite number of 
dimensions. For integers n1, n2, …, nd, we will speak then of the solid n1×n2×…×nd-
grid. The solid n1×n2×…×nd-grid is isomorphic to Pn1

×Pn2
×…×Pnd

, where Pni
 is the 

path of ni vertices. The toroidal n1×n2×…×nd-grid is the product Cn1
×Cn2

×…×Cnd
, 

where Cni
 is the cycle of ni vertices. A grid graph is a finite node-induced subgraph of 

the infinite two-dimensional integer grid Q∞,∞. A solid grid graph is a grid graph all of 
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whose bounded faces have area one. Here it is assumed that this infinite grid is 
embedded in a canonical way in the Euclidean plane.  

For such classes of structures it is easy to see that many algorithmic problems can be 
solved by using the regular structure of these graphs, e. g. CHROMATIC NUMBER, 
MONOCHROMATIC TRIANGLE, PARTITION INTO TRIANGLES, COVERING 
BY CLIQUES, CLIQUE, INDEPENDENT SET, BIPARTITE SUBGRAPH, PLANAR 
SUBGRAPH are trivial or follow from known results (see [10] for notation). This list is 
not complete and it can be assumed that there are many other problems, also other NP-
complete problems from [10], which can be solved easily for d-dimensional solid grids 
just by considering the regular structure of these grids. Some more interesting results 
exist for the HAMILTONIAN CYCLE problem (see [17]), for the DOMINATION 
NUMBER (see [13]) and for PARITY DOMINATION problems (see e.g. [11]). Every 
graph contains an odd dominating set. These and related results motivate the question, 
whether there could be general principles to deduce efficient algorithms for graphs with 
a very regular grid structure.  

We will consider here a more general class of graphs, the grid-structured 
hierarchical graphs. Such graphs have interesting applications in VLSI-design, 
systolic arrays, in the parallelization of algorithms and especially in building multi-
dimensional schedules for system of uniform recurrence equations (see e.g. [19], [18], 
[21], [20]). Such uniform recurrence equations typically appear when finite difference 
approximations to systems of partial differential equations are constructed. 

Grid-structured hierarchical graphs are defined by giving a static graph defining 
the content of a cell of a d-dimensional grid, repeating this static graph in each cell 
and by connecting the vertices in cells of a local neighborhood corresponding to a 
finite transit function in a uniform way (see [19], [15] for details). More precisely, a 
d-dimensional static graph is a system S = (V, E, f), where S\f := (V, E) is a directed 
graph and f: E → Zd is a transit function mapping a d-dimensional integer vector to 
each edge E. The dynamic graph Sx, for x∈Nd, is a (directed) graph (V’, E’) with: 
 
 V’ := {uz : u∈V ∧ 0→ ≤ z < x} and 
 E’ := {(uz,vz+f((u,v))) : (u,v)∈E ∧ 0→ ≤ z, z+f((u,v)) < x}. 
 

Here we 0→  denotes the vector of 0’s, ≤ and + are defined component-wise and < 
is defined to be equivalent to “≤ and at least one component has to be less”. More 
precisely the relation ≤ on Nd is defined as follows. For all x=(x1,…,xd), 
y=(y1,…,yd)∈Nd: x≤y if and only if xi≤yi for all i with 1≤i≤d. An infinite dynamic 
graph results by setting some of the components to infinity. The resulting grid 
structures play an important role in parallel programming where they are a natural 
model of flow graphs of uniform iterative or recursive programs. Graphs appearing in 
mesh-like chip architectures can be easily translated into such grid-structured graphs.  

Each complete, solid n1×n2×…×nd grid can be represented as a dynamic graph 
S(n1,n2,…,nd) of a corresponding static graph S. A class K of d-dimensional dynamic 
graphs is finitely represented if there is a finite set D of static graphs, such that K is 
the set K = {S(n1,n2,…,nd)  : n1, n2, … ,nd ∈ N, S∈D}. It is an interesting question to 
characterize those problems which can be solved efficiently (in polynomial or linear 
time) for the classes if d-dimensional finitely represented dynamic graphs. When one 
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considers the class of NP-complete problems as the basis to select problems, then 
with the exception of some isolated problems (see above) this problem is widely 
open. Of course two known results can be applied here. The first is to restrict dynamic 
graphs to more restricted subclasses. If only one of the dimensions is allowed to grow 
to infinity then the corresponding dynamic graphs have bounded path-width.  
  
Observation 1. Assume that K is defined as K = {S(n1,n2,…,nd): n1∈N1, n2∈N2, … 

,nd∈Nd, S∈D}, where D is a finite set of static graphs, N1, N2, … , Nd, ⊆ N and only 
one Ni is allowed to be infinite, while all the other have to be finite. Then K has 
bounded path-with. Hence each existential locally verifiable (ELV, see [24]) problem, 
each monadic second order (MSO, see [3]) problem and each extended monadic 
second order problem (EMS, see [1]) can be solved in linear time for such classes. 
 
It is easy to see that the path-width depends only on the maximum of the dimensions 
in the sets Nj, which are finite, and of the “reach” of the functions f in the 
corresponding underlying static graphs S = (V, E, f)∈D. Moreover we can observe 
that each finitely represented class of d-dimensional dynamic graphs has bounded 
degree. The bound depends only on the dimension d and on the maximum of the 
degrees of the members of the corresponding set of static graphs. Hence each first 
order problem can be solved for such classes in linear time, using a corresponding 
result from [25] (see also [8], [9]). 
 
Observation 2. Let K be an arbitrary finitely represented class of dynamic graphs. 
Then each first order problem (FO problem, see section 3 for exact notation) can be 
solved for K in linear time. 
 
In the following we will improve this observation by showing that each FO-problem 
can be solved for such classes in constant time O(1). 
 
Theorem 1. Let K be an arbitrary finitely represented class of dynamic graphs. Then 
each first order problem (FO problem, see section 3 for exact notation) can be solved 
for K in constant time O(1), when the representation, i.e. the static graphs S and the 
vector x of dimensions, is given together with the input structure Sx. 
 
The basic idea of the proof is to show that for each FO-formula ϕ there is a size of 
vectors x and y, such that dynamic graphs Sx and Sy can not be distinguished by ϕ if x 
and y are sufficiently large. This idea can not be generalized to arbitrary MSO-
formulas, since one can distinguish for some structures an odd and an even number of 
vertices by such formulas, what is not possible for FO-formulas. The proof follows in 
the next section after presenting the logical machinery. At first the following 
observation follows directly from the corresponding definitions. 
 
Observation 3. Let S be a static graph and assume that x, y ∈ Nd are d-tuples of 
natural numbers, then x≤y implies the subgraph inclusion Sx⊆Sy for the dynamic 
graphs.  
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A decision problem P is monotone if for all graphs H and G with H ⊆ G, P(G) implies 
P(H). Examples of monotone properties of a graph G are “chromatic number (G) ≤ k”, 
“genus (G) ≤ k”, “crossing number of G ≤ k ” and “H is not a minor of G” for fixed 
k∈N and fixed graph H. 
 
Theorem 2. Let K be a class of finitely represented dynamic graphs. Each monotone 
decision problem P can be solved in constant time for K when the representation, i.e. 
the static graph S and the vector x of dimensions, is given together with the input Sx. 

As a corollary follows that CHROMATIC NUMBER can be solved in constant 
time, since it can be bounded by the maximum degree + 1. 
 
Proof. Let P be the monotone property and assume, that K is given as K = 
{S(n1,n2,…,nd): n1∈N1, n2∈N2, … ,nd∈Nd, S∈D}, for d and D as above.  Define T to be 

the set of vectors x ∈ Nd for which Sx has the property P. For technical simplicity we 
present the technical details of the proof only in case |D| = 1 and dimension d=2. The 
arbitrary case is then a straightforward generalization. We have to distinguish several 
cases. The basic idea is to subdivide Nd in a finite number of rectangular areas, where 
the answer to P is either “yes” or “no” in the whole area. This subdivision procedure 
starts with the whole area Nd and subdivides an area (as described below) if the 
solution is not constant in it.  
 
In case T = Nd we are done since then the answer to P for each instance is always 
“yes”, so we have nothing to compute. So let us assume T ≠ Nd. Hence there exists an 
i0∈N with (i0,i0) ∈ T and (i0+1,i0+1)∉T. Otherwise we would have T=Nd by 
observation 3, since P is closed under substructures. By the same argument we know 
that there is no y∈T with (i0+1,i0+1)≤y. So we have distinguished two areas where the 
decision problem P can be solved in a trivial way. The first is a finite area containing 
all x∈Nd with x≤(i0,i0) and the answer is for each such x “yes”, since the problem is 
monotone. The second is the infinite area of all y∈Nd with (i0+1,i0+1)≤y. As stated 
above no such y is in T and hence no such y has property P. Now there remain two 
infinite areas R = {x=(i,j): i0<i and 0≤j≤i0} and L = {x=(i,j): 0≤i≤ i0 and i0<j}. We 
start with R. When R⊆T is satisfied, then P can be answered trivially “yes” on R. In 
case R∩T=∅ we are also done, since then the answer for the whole area R is trivially 
“no”. So we can assume R∩T ≠∅. Let j1 be defined as j1 := max {j ∈ N: there is a i 
with (i,j) ∈R∩T} and let i1 be defined as i1 := max{i∈N: (i,j1)∈R∩T}. j1 does exist in 
our case and is bounded by i0, by the definition of R. For i1 ≠ i0 it can happen that the 
second maximum i1 does not exist. In this case we set i1=∞. The subdivision 
procedure can be finished at this branch, since then the whole area R is subdivided 
into {(i,j)∈Nd: i0≤i and j1 < j ≤ i0} and {(i,j)∈Nd: i0≤i and 0 ≤j≤j1}. In the first area P 
has the constant answer “yes” and in the second are P has the constant answer “no”. If 
i1 is finite then the answer to P in the area {(i,j)∈Nd: i0≤i≤i1 and 0≤j≤j1} is constant 
“yes”. In this case we proceed in the same way for the area {(i,j)∈Nd: i1<i and 0≤j≤j1} 
as we did for area R. The area L can be handled in the same way, only the role of i 
and j has to be interchanged. This subdivision procedure ends after a finite number of 
steps, since in each subdivision step we either reach an infinite area which has not to 
be divided any more or one of the dimensions of the subdivision points (i in the left 
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area L, or j in the right area R) becomes smaller, hence the process has to end since 
there are no infinite descending sequences of natural numbers.  

The subdivision process in d≠2 dimensions is handled in the same way. In the 
general case we have to handle only some more cases. This procedure gives us at the 
end a finite set C⊆(N∪{∞})d, such that: 

 

⎭
⎬
⎫

⎩
⎨
⎧ ≤≤<∈==

∈=
diaxNxxxT ii

d
d

Caaa d

1,:),...,( 1
),...,( 1

U   (1) 

 
Here the relation < is defined in the canonical way when ai=∞. So the algorithm to 

compute P for an input Sx has simply to compare the vector x of dimensions of Sx 
with the vectors a in C. If all the components of x are less than all the components of 
a vector a∈C, then the answer is “yes”, otherwise it is “no”. To see that this is O(1) 
one has to remember only, that we do not have to read the whole structure Sx. It is 
sufficient to check the size of the dimensions. If they exceed the size of the 
corresponding component of the vectors in C it can stop. This ends the proof of 
theorem 2.  
 
Remark 1. For many classes of finitely represented dynamic graphs it is possible to 
prove a stronger form of theorem 2, in which the assumption that the representation is 
given together with the input is omitted. This holds e.g. for solid rectangular grids of 
dimension d and for all dynamic graphs, where d-dimensional “grid-structures” can 
be found.  
 
But in general a lot of case analysis has to be done here. So we leave it as a conjecture 
to the reader to find an elegant proof of such a generalization. While theorem 2 has a 
pure combinatorial proof some terminology and machinery from logic is used to 
prove theorem 1. This is presented in the next section.  

3   First Order Logic and n-Equivalence 

The formulas from first-order logic are build in the usual way (see e.g. [6]) from 
atomic formulas (formulas of the form x=y or R(x1,…,xn) for variables x,y,x1,…,xn 
and n-ary relation symbols R) using the connectives ¬, ∧, ∨, →, ↔, and the 
quantifiers ∀, ∃. We will restrict our attention here only to relational structures, 
especially graphs, hence we do not allow functions in the atomic formulas. A decision 
problem P over a class K of input structures is first-order definable (FO), when there 
does exist a first order formula ϕ such that for all structures G∈K: 

 
G has property P ⇔ G |=ϕ. 

 
Examples of FO-properties are k-DOMINATING-SET, k-INDEPENDENT-SET and 
k-CLIQUE for fixed k, H-SUBGRAPH-ISOMORPHISM, H-INDUCED-
SUBGRAPH and H-HOMOMORPHISM for fixed H (see [10] for definition). 
Examples of properties which are provably not FO properties are “G is connected”, 
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“G has an even number of vertices” and “H is a minor of G” for many graphs H, e.g. 
H=K3.  

FO problems for arbitrary finite structures are in P and can be solved in logarithmic 
space ([16]). For relational structures of bounded degree FO problems can be solved 
in linear time. 
 
Theorem 3 ([25]). Let d > 0 be an arbitrary natural number and let P be a first order 
property for a class of graphs of degree bounded by d. Then P can be solved in linear 
time over K. 
 
The basic idea of the proof of theorem 3, which is also the basis of the proof of 
theorem 1, is that first order properties can be reduced to properties of local 
neighborhoods for the vertices of the regarded graphs. For graphs of bounded degree 
these properties degenerate to a check whether the isomorphism type of each local 
neighborhood is in a finite set of possible types (and we count the number of the 
occurring types up to a certain size, depending an the size of the formula), what can 
be checked by an algorithm visiting each vertex once and testing its local 
isomorphism type. Hence each FO problem reduces to a check of the local structure 
of the input objects. A very interesting generalization of this result for locally tree-
decomposable structures can be found in [8]. Such structures are roughly those 
structures whose local neighborhoods have bounded tree width. Examples of classes, 
which are locally tree-decomposable are structures of bounded tree width, structures 
of bounded degree, planar graphs, graphs of bounded genus and all graphs with an 
arbitrary forbidden minor. 
 
Theorem 4 ([8]). Assume that K is a class of relational structures that is locally tree-
decomposable and let P be a first-order property. Then there is a linear time algorithm 
deciding whether a given structure G ∈ K has property P. 
 
Theorem 1 can be viewed as a refinement of theorem 3, since finitely represented grid 
structured graphs have bounded degree. The basic idea of the proof is to show that for 
each static graph S, for each dimension d∈N and for each first order formula ϕ there 
is a natural number s such that the dynamic graphs Sx and Sy can not be distinguished, 
when x,y∈Nd and all components of x and y are larger than s.  

To prove this theorem we will use a localization technique based on a method that 
was originally developed by Hanf in [12] to show that elementary theories of two 
structures are equal under certain conditions, i.e., that two structures agree on all first-
order sentences. Fagin, Stockmeyer and Vardi [7] developed a variant of this 
technique, which is applicable in descriptive complexity theory to classes of finite 
relational structures of uniformly bounded degree. The essential content of this result, 
which is that two relational structures of bounded degree satisfy the same first-order 
sentences of a certain quantifier-rank if both contain, up to a certain number m, the 
same number of isomorphism types of substructures of bounded radius r. 
 
The quantifier-rank of a formula ϕ, denoted as qr(ϕ), is defined by induction on the 
structure of formulas: qr(ϕ) := 0 if ϕ is atomic, qr(ϕ∧ψ) := max(qr(ϕ),qr(ψ)), qr(ϕ∨ψ) 
:= max(qr(ϕ),qr(ψ)), qr(ϕ→ψ) := max(qr(ϕ),qr(ψ)), qr(ϕ↔ψ) := max(qr(ϕ),qr(ψ)), 
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qr(¬ϕ) := qr(ϕ), qr(∀xϕ) := qr(ϕ)+1, qr(∃xϕ) := qr(ϕ)+1, Let G and H be two 
structures for the same vocabulary and assume n∈N. We define a relation ≡n between 
these structures by: G ≡n H if and only if for each FO-formula ϕ of the corresponding 
language with qr(ϕ)≤n, G|=ϕ ⇔ H|=ϕ. The two structures G and H are called n-
equivalent, what means in other words that they both satisfy the same sentences of 
quantifier-rank ≤ n. For the class of relational structures of finite signature the relation 
≡n is an equivalence relation with finitely many equivalence classes and for each 
equivalence class Γ there is a formula γ of quantifier-rank n such that Γ={H: H is a 
structure for the corresponding vocabulary and H |= γ} (see [6] for details).  

For a graph G and two of its vertices, define dG(a,b) to be the distance of a and b in 
G, i.e. the length of the shortest path between a and b. We write dG(a,b)=∞, in case 
that a and b can not be connected by a path. For r≥1 we define Nr

G(a) := {b∈V(G): 
dG(a,b)≤r}, the r-neighbourhood of a∈V(G) and Nr

G(X) := ∪{Nr
G(a): a∈X} for some 

X⊆V(G). The 1-neighborhood corresponds to the closed neighborhood. When this 
notion is used for tuples (a1,..,an) then it is defined as Nr

G((a1,..,an)) := Nr
G({a1,..,an}). 

For a graph G Hanf defined the r-type of a vertex of G, to be the isomorphism type of 
(G↓ Nr

G(a),a) where (G↓ Nr
G(a),a) is the restriction of G to the r-neighbourhood of a 

in G, where a is designated as the value of a new constant, which is called the centre. 
More precisely, individuals a and b in the domain of two structures G and H, 
respectively, have the same r-type if (G↓ Nr

G(a),a) ≅ (H↓ Nr
H(b),b)  under an 

isomorphism mapping a to b. r will be called the radius of the r-type. We will denote 
these structures as r-neighborhoods of vertex a in G. Let r∈N and m≥1 be given. 
Following [7] we define two structures G and H to be (r,m)-equivalent if and only if 
for every r-type τ, either G and H have the same number of individuals with r-type τ, 
or both have at least m individuals with r-type τ. Hence, G and H are (r,m)-equivalent 
if they have both the same number of individuals with r-type τ, where we can count 
only as high as m, for arbitrary r-types τ. The following result is due to Fagin, 
Stockmeyer and Vardi. 
 
Theorem 5 ([7]). Let n and t be positive integers. There are positive integers r, m, 
where r depends only on n, such that whenever G and H are (r,m)-equivalent 
structures of degree at most t, then G ≡n H.  
 
This result was used in [25] to prove theorem 3, since it enabled us to reduce an 
arbitrary FO-problem to a local problem, i.e. a problem that can be decided by visiting 
once each vertex of the structure and looking only at its neighborhood to a certain 
fixed radius. Using this result we are now able to prove theorem 1. 

 
To prove theorem 1 assume that K is a finitely represented class of dynamic graphs 
and that P is a first-order property defined by a FO sentence ϕ. Let n be the quantifier 
rank of ϕ. It is sufficient to prove the theorem for each of the static graphs S, 
representing K, since K is finitely represented. Since S is finite all dynamic graphs Sx, 
for x∈Nd, where d is the dimension corresponding to S, have a universally bounded 
degree, say by t. For this n and t we choose now r and m corresponding to theorem 5. 
It is now a technical, but easy exercise to compute from r and m a size k0, such that Sx 
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≡n S
y, for all x and y with k0 < xi, yi (for all i: 1≤i≤d). The basic idea is that the r-types 

occurring in the dynamic graphs Sx can be subdivided into different classes: 
  

i. those occurring in the “corners” of Sx (i.e. those related to components, 
where all of the coordinates are either maximal or minimal, up to a certain 
distance), 

ii. those occurring at the “sides/faces” of Sx (i.e. those related to components, 
where at least one of the coordinates is up to a certain distance either 
maximal or minimal – of course the dimension of the “side/face” has to be 
considered here), and 

iii. those occurring in the “center” of Sx (i.e. those related to components, where 
none of the coordinates is maximal or minimal, up to a certain distance).  

 
The key observation here is that when the structure Sx is enlarged or changed to Sy 
then the types occurring close to the corners do not change their number. All the other 
types become more or less depending on the factor of enlargement, but they never 
disappear. So the same types occur in Sx and Sy, only the number of the “central” 
types differs. When now k0 is chosen in such a way that in the central and side area 
the number of occurrences of each type is larger than m then Sx and Sy are n-
equivalent via theorem 5. To choose k0 let s0 be the size of the largest component of a 
vector f(e) for all edges of the static graph (where f is the transit function from the 
definition of a dynamic graph). Now we define k0 := 2*(r+1)*s0+m*s0, where r and m 
are chosen as in theorem 5 for t and n.  Now let x=(x1,…,xd), y=(y1,…,yd)∈Nd be 
arbitrary vectors with k0 > xi, yi for all i with 1≤i≤d. Then by the definition of the 

dynamic graph Sx all r-types of the neighborhoods (Sx↓ Nr
Sx

(a),a) for vertices a=uz (as 
in the definition of a dynamic graph) with z=(z1,…zd), for which there is an i0 with 
(r+1)*s0<zi0

<xi0
-(r+1)*s0 occur at least m times. These types are r-types represented at 

the “center” or at the “center of the sides / faces”. The “center” area are just the 
vertices a=uz (as in the definition of a dynamic graph) with z=(z1,…zd), for which 
(r+1)*s0<zi<xi-(r+1)*s0 holds for all i with 1≤i≤id. Also here all r-types occur at least 
m times. All the other r-types are represented near the “corner”, i.e. the area of 
vertices a=uz (as in the definition of a dynamic graph) with z=(z1,…zd), for which for 
all i either 0≤zi≤(r+1)*s0, or xi-(r+1)*s0 ≤zi≤ xi holds. But the “corner”-types occur as 
often in Sx as in Sy, when they do not occur at least m times, since the “corner”-areas 
are isomorphic by the definition of these dynamic graphs. Thus we get Sx ≡n S

y, for all 
x and y with k0 < xi, yi (for all i: 1≤i≤d), via theorem 5. But there are only a finite 
number of vectors x=(x1,…,xd)∈Nd with max(x1,…,xd) ≤ k0. With the exception of 
these vectors all other structures Sx are n-equivalent. Hence property P, i.e. Sx |= ϕ, 
has to be checked only for one of them. e.g. for xS,0 = (k0+1,k0+1,…,k0+1)∈Nd.  

The idea of the O(1) algorithm is now as follows. For each of the finite number of 
static graphs S representing K we compute xS,0 as above. Then we compute the values of 
“Sx |= ϕ” for all x∈Nd with x ≤ xS,0. Assume that these values are stored in a table 
(Si,x,t), where t is the corresponding truth value of “Si

x |= ϕ” and i is the index of the 
corresponding representations. Moreover assume that the vectors xSi,0

 are also stored  

together with their corresponding static graphs Si in a table (Si,xSi,0
), where i is the index 
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of the corresponding representation. This is the pre-processing of the algorithm, which 
can be done in constant time. Now assume that Ty∈K is given. The only things we have 
to do is to find the index of T, i.e. to find the i with T ≅ Si and then to check y<xSi,0

. In 

case the latter is true the entry t of (Si,y,t) gives the truth value of “Ty |= ϕ”, i.e. the truth 
value of property P for Ty. Otherwise the entry t of (Si, xSi,0

, t) gives the corresponding 

output. But these checks can be done in constant time. Remember that it is not necessary 
to know the complete y to perform the check y < xSi,0

, it is sufficient just to know a 

small part of the bits of the corresponding components. This holds for a uniform, 
logarithmic and also for a unary encoding of the components of y. The other checks can 
be done obviously in constant time, since we assumed that the corresponding 
representations are given together with the input. This proves theorem 1. 

 
Remark 2. As in remark 1 it can be shown that the assumption, that the 
representation has to be given together with the input Sx, can be omitted for many 
classes of finitely represented dynamic graphs. As there we conjecture that the result 
holds in general without this assumption. As in theorem 1 this conjecture can be 
proved when complete grid-structures can be found in Sx, hence especially for the 
complete rectangular solid grids. 

4   Concluding Remarks 

The results of this article can be generalized to more general classes of structures. 
Theorem 1 holds also for toroidal grids and for a corresponding generalization of grid 
structured hierarchical graphs to toroidal grid structured hierarchical graphs. Just 
substitute in the definition of dynamic graphs the rectangular d-dimensional grids by 
d-dimensional toroidal grids. Moreover the definition of dynamic graphs and grid 
structured hierarchical graphs can be generalized to triangular, hexagonal and other 
regular grids and also to structures with more than one relation. This concept 
generalizes for arbitrary relational structures using the underlying graph or the 
concept of Gaifman-graphs. Moreover it can be shown that the degree bound, which 
was needed in theorem 5 is not necessary by using variants of Ehrenfeucht-Fraissé 
game theoretic equivalences instead of n-equivalence. Using linear time 
interpretability as introduced in [1] and the theorem of Feferman and Vaught one can 
show that each class of finitely represented grid-structured hierarchical graphs has a 
decidable first order theory. Moreover these ideas can lead to a different proof of 
theorem 1 by reducing grid-structured hierarchical graphs via interpretability to a 
variant of a Cartesian product of paths Pi of a sufficient length i. For further details we 
refer the reader to the final version of the full paper. For all the above and related 
classes of graphs with a highly regular structure (e.g. generated by graph grammars or 
special operations as e.g. in [15], [26]) it is an interesting question to find a general 
characterization of those algorithmic problems with efficient solutions. Moreover it 
could be of interest to find suitable parameters (in the sense of parameterized 
complexity [5]) to characterize the regularity or homogeneity of these and related 
structures which can be exploited for the design of efficient algorithms for (almost) 
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regular or homogeneous structures or huge networks (see possibility B to reduce 
complexity in the introductory section 1.2 of [14]). 
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Abstract. Let Kc
n denote a complete graph on n vertices whose edges

are colored in an arbitrary way. And let Δ(Kc
n) denote the maximum

number of edges of the same color incident with a vertex of Kc
n. A prop-

erly colored cycle (path) in Kc
n, that is, a cycle (path) in which adjacent

edges have distinct colors is called an alternating cycle (path). Our note
is inspired by the following conjecture by B. bollobás and P. Erdős(1976):
If Δ(Kc

n) < �n/2�, then Kc
n contains an alternating Hamiltonian cycle.

We prove that if Δ(Kc
n) < �n/2�, then Kc

n contains an alternating cycle
with length at least �n+2

3 � + 1.

Keywords: alternating cycle, color degree, edge-colored graph.

1 Introduction and Notation

We use [2] for terminology and notations not defined here. Let G = (V, E)
be a graph. An edge-coloring of G is a function C : E → N(N is the set of
nonnegative integers). If G is assigned such a coloring C, then we say that G
is an edge-colored graph, or simply colored graph. Denote by (G, C) the graph
G together with the coloring C and by C(e) the color of the edge e ∈ E. For
a subgraph H of G, let C(H) = {C(e) : e ∈ E(H)} and c(H) = |C(H)|. For a
color i ∈ C(H), let iH = |{e : C(e) = i and e ∈ E(H)}| and say that color i
appears iH times in H . For an edge-colored graph G, if c(G) = c, we call it a
c-edge colored graph.

A properly colored cycle (path) in an edge-colored graph, that is, a cycle(path)
in which adjacent edges have distinct colors is called an alternating cycle (path).
In particular, an alternating Hamiltonian cycle (path) is a properly colored
Hamiltonian cycle (path). For l ≥ 3, let ACl denote an alternating cycle with
length l. Besides a number of applications in graph theory and algorithms, the
concept of alternating paths and cycles, appears in various other fields: genetics
(cf. [9,10,11]), social sciences (cf. [8]). A good resource on alternating paths and
cycles is the survey paper [2] by Bang-Jensen and Gutin.

F.P. Preparata and Q. Fang (Eds.): FAW 2007, LNCS 4613, pp. 305–309, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Grossman and Häggkvist [12] were the first to study the problem of the exis-
tence of the alternating cycles in c-edge colored graphs. They proved Theorem
1.1 below in the case c = 2. The case c ≥ 3 was proved by Yeo [17]. Let v be
a cut vertex in an edge-colored graph G. We say that v separates colors if no
component of G − v is joined to v by at least two edges of different colors.

Theorem 1.1 (Grossman and Häggkvist [12], and Yeo [17]). Let G be a c-edge
colored graph, c ≥ 2, such that every vertex of G is incident with at least two
edges of different colors. Then either G has a cut vertex separating colors, or G
has an alternating cycle.
Given an edge-colored graph G, let dc(v), named the color degree of a vertex v,
be defined as the maximum number of edges adjacent to v, that have distinct
colors. In [16], some color degree conditions for the existence of alternating cycles
are obtained as follows.

Theorem 1.2 (Li and Wang [16]). Let G be an edge-colored graph with order
n ≥ 3. If dc(v) > n+1

3 for every v ∈ V (G), then G has an alternating cycle AC
such that each color in C(AC) appears at most two times in AC.

Theorem 1.3 (Li and Wang [16]). Let G be an edge-colored graph with order
n ≥ 3. If dc(v) ≥ 37n−17

75 for every v ∈ V (G), then G contains at least one
alternating triangle or one alternating quadrilateral.

Theorem 1.4 (Li and Wang [16]). Let G be an edge-colored graph with order n.
If dc(v) ≥ d ≥ 2, for every vertex v ∈ V (G), then either G has an alternating
path with length at least 2d, or G has an alternating cycle with length at least
� 2d

3 � + 1.

Consider the edge-colored complete graph, we use the notation Kc
n to denote

a complete graph on n vertices, each edge of which is colored by a color from
the set {1, 2, · · · , c}. And Δ(Kc

n) is the maximum number of edges of the same
color adjacent to a vertex of Kc

n. And we have the following conjecture due to
Bollobás and Erdős [4].

Conjecture 1.5 (Bollobás and Erdős [4]). If Δ(Kc
n) < �n

2 �, then Kc
n contains

an alternating Hamiltonian cycle.

Bollobás and Erdős managed to prove that Δ(Kc
n) < n

69 implies the existence of
an alternating Hamiltonian cycle in Kc

n. This result was improved by Chen and
Daykin [7] to Δ(Kc

n) < n
17 and by Shearer [15] to Δ(Kc

n) < n
7 . So far the best

asymptotic estimate was obtained by Alon and Gutin [1].

Theorem 1.6 (Alon and Gutin [1]). For every ε > 0 there exists an no = n0(ε)
so that for every n > no, Kc

n satisfying Δ(Kc
n) ≤ (1− 1√

2
−ε)n has an alternating

Hamiltonian cycle.
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In the present paper, we study the long alternating cycles of edge-colored com-
plete graphs and gain the following result.

Theorem 1.7 If Δ(Kc
n) < �n

2 �, then Kc
n contains an alternating cycle with

length at least �n+2
3 � + 1.

2 Proof of Theorem 1.7

If P = v1v2 · · · vp is a path, let P [vi, vj ] denote the subpath vivi+1 · · · vj , and
P−[vi, vj ] = vjvj−1 · · · vi.

Lemma 2.1 (Bang-Jensen, Gutin and Yeo[3]). If Kc
n contains a properly colored

2-factor, then it has a properly colored Hamiltonian path.

Häggkvist [13] announced a non-trivial proof of the fact that every edge-colored
complete graph graph satisfying above Bollobás-Erdős condition contains a prop-
erly colored 2-factor. Lemma 2.1 and Häggkvist’s result imply that every edge-
colored complete graph satisfying Bollobás-Erdős condition has an alternating
Hamiltonian path.

Proof of Theorem 1.7. If n = 3, the conclusion holds clearly. So we assume that
n ≥ 4. By contradiction. Suppose that our conclusion does not hold. Then let
P = v1v2 · · · vn be an alternating Hamiltonian path of Kc

n. Choose s satisfying
the followings:

R1. C(v1vs) 
= C(v1v2).
R2. s ≥ �n+2

3 � + 1.
R3. Subject to R1, R2, s is minimum.

Lemma 2.2
(1.1) s ≤ �n

2 � + �n+2
3 � − 1.

(1.2) For i ≥ s, if C(v1vi) 
= C(v1v2), then C(v1vi) 
= C(vivi+1).

Proof. By R3, for �n+2
3 � + 1 ≤ j ≤ s − 1, we have that C(v1vj) = C(v1v2). If

s ≥ �n
2 � + �n+2

3 �, then there exist at least �n
2 � + �n+2

3 � − (1 + �n+2
3 �) + 1 ≥ �n

2 �
edges with the color C(v1v2) incident with v1, a contradiction with Δ(Kc

n) <
�n

2 �.
Since P is an alternating Hamiltonian path, then C(vi−1vi) 
= C(vivi+1).

If there exists i ≥ s such that C(v1vi) 
= C(v1v2) and C(v1vi) = C(vivi+1),
then P [v1, vi]viv1 is an alternating cycle with length i ≥ s ≥ �n+2

3 � + 1, a
contradiction.

Then choose t satisfying the followings:

R
′

1. C(vtvn) 
= C(vn−1vn).
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R
′

2. t ≤ n − �n+2
3 �.

R
′

3. Subject to R
′

1, R
′

2, t is maximum.

Similarly, we have the following lemma, here we omit the details.

Lemma 2.3
(3.1) t ≥ �n

2 � − �n+2
3 � + 2.

(3.2) For i ≤ t, if C(vivn) 
= C(vn−1vn), then C(vivn) 
= C(vi−1vi).

Lemma 2.4. s < t.

Proof. Otherwise, we have that s ≥ t. If s > t, then AC0 = v1vsP [vs, vn]vlvt

P−[vt, v1] is an alternating cycle. And |AC0| = |P [vs, vn]| + |P [v1, vt]| ≥ (n −
�n

2 � − �n+2
3 � + 2) + (�n

2 � − �n+2
3 � + 2) = 2(�n

2 � − �n+2
3 �) + 4 ≥ �n+2

3 � + 1, a
contradiction.

So we assume that s = t. For s + 1 ≤ j ≤ n − 1, we conclude that C(v1vj) =
C(v1v2). Otherwise, there is an alternating cycle AC1 = v1vjP [vj , vn]vnvsP

−[vs,
vn] with length |AC1| ≥ 2 + |V (P [v1, vs])| ≥ 3 + �n+2

3 �, which gives a contradic-
tion. Similarly, for 2 ≤ j ≤ s − 1, it holds that C(vjvn) = C(vn−1vn). Then by
Δ(Kc

n) < �n
2 �, consider vertex v1 and the color C(v1v2), it holds that n−s < �n

2 �,
then s > �n

2 �. Similarly, consider vertex vn and the color C(vn−1vn), we have
that s − 1 < �n

2 �, then s < �n
2 � + 1, a contradiction.

Lemma 2.5. For 2 ≤ j ≤ s−1, C(vnvj) = C(vn−1vn); And for t+1 ≤ j ≤ n−1,
C(v1vj) = C(v1v2).

Proof. By symmetry, we only prove the first part. Otherwise, there exists 2 ≤
j ≤ s − 1 such that C(vjvn) 
= C(vn−1vn). Clearly, j ≤ t, thus by Lemma 2.3
we have that C(vj−1vj) 
= C(vjvn). Then we get an alternating cycle AC2 =
v1vsP [vs, vn]vnvjP

−[vj , v1]. And it holds that |AC2| ≥ |V (P [vs, vn])| + 2 ≥
|V (P [vt, vn])| + 3 ≥ �n+2

3 � + 3, a contradiction.

Denote A = {v : C(v1v) 
= C(v1v2)} and B = {v : C(vnv) 
= C(vn−1vn)}.

Lemma 2.6. |A ∩ V (P [vs, vt])| + |B ∩ V (P [vs, vt])| ≥ 2(�n
2 � − �n+2

3 � + 1).

Proof. By R1, |A∩V (P [vs, vn])| ≥ n−(�n
2 �−1)−(�n+2

3 �−1) ≥ �n
2 �−�n+2

3 �+2.
Then by Lemma 2.5, we obtain that A∩V (P [vs, vn]) = A∩(V (P [vs, vt])∪{vn}) =
(A∩V (P [vs, vt]))∪(A∩{vn}). It follows that |A∩V (P [vs, vt])| ≥ �n

2 �−�n+2
3 �+

1. Similarly, we can obtain that |B ∩ V (P [vs, vt])| ≥ �n
2 � − �n+2

3 � + 1. Then
|A ∩ V (P [vs, vt])| + |B ∩ V (P [vs, vt]| ≥ 2(�n

2 � − �n+2
3 � + 1).

Now we completes the proof of Theorem 1.7 as follows. We have that |V (P [vs,
vt])| ≤ n − |V (P [v1, vs−1])| − |V (P [vt+1, vl])| ≤ n − 2�n+2

3 �. And by Lemma
2.6, |A ∩ V (P [vs, vt])| + |B ∩ V (P [vs, vt])| = |A| + |B| ≥ 2(�n

2 � − �n+2
3 � + 1) >

n−2�n+2
3 �+1 > |V (P [vs, vt])|, then it follows that there exists vj (s+1 ≤ j ≤ t)

such that vj ∈ A and vj−1 ∈ B. So we get an alternating Hamiltonian cycle
v1vjP [vj , vn]vnvj−1P

−[vj−1, v1], a contradiction. This completes the proof.
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Abstract. Let G be a simple graph and f an odd integer-valued function
defined on V (G). A spanning subgraph F of G is called a fractional (1, f)-
odd factor if dF (v) ∈ {1, 3, · · · , f(v)} for all v ∈ V (G), where dF (v) is
the fractional degree of v in F . In this paper, we discuss the existence for
a graph to have a fractional (1, f)-odd-factor. A necessary and sufficient
condition for a tree to have a fractional (1, f)-odd factor is given.

1 Introduction

Fractional factor theory has extensive applications in some areas such as network
design, combinatorial topology, decision lists and so on. For example, in the
communication networks, if we permit that large date package can be partitioned
into some parts to send to some different destinations by different channels, then
the running efficiency of networks will be greatly improved. Feasible and efficient
assignment for date package can be viewed as problem to find a fractional factor
satisfying some special conditions.

All graphs considered are finite simple graphs. Let G be a graph with vertex
set V (G) and edge set E(G). For a vertex x ∈ V (G), the degree of x in G is
denoted by dG(x). We write NG(x) for the set of vertices adjacent to x in G. If S
is a subset of V (G), o(G\S) denotes the number of odd components of G\S. The
set of isolated vertices of G \S is denoted by I(G \S) and |I(G \S)| = i(G \S).
For two disjoint subsets S, T of V (G), EG(S, T ) denotes the set of edges in G
whose one vertex in S and another in T and |EG(S, T )| = eG(S, T ).

Let g and f be two integer-valued functions defined on V (G) such that 0 ≤
g(x) ≤ f(x) for all x ∈ V (G). A (g, f)-factor F of G is a spanning subgraph
of G satisfying g(x) ≤ dF (x) ≤ f(x) for all x ∈ V (G). If g(x) = f(x) for
every x ∈ V (G), then a (g, f)-factor F is called an f-factor. If f(x) = k for all

� The work is supported by NNSF (10471078) of China and RFDP (20040422004),
Promotional Foundation (2005BS01016) for Middle-aged or Young Scientists of
Shandong Province, DRF and UF(XJ0609)of QFNU.

�� The corresponding author.
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x ∈ V (G), then an f -factor is called a k-factor. In particular, if f is a function
defined on V (G) such that f(x) is a positive odd integer for every x ∈ V (G),
then we denote such a function by f : V (G) → {1, 3, 5, · · ·}. Then a spanning
subgraph F of G is called an (1, f)-odd factor if dF (x) ∈ {1, 3, 5, · · · , f(x)} for
all x ∈ V (G). Let n be a positive integer and f(x) = 2n − 1 for all x ∈ V (G).
Then a (1, f)-odd factor is called a {1, 3, 5, · · · , 2n − 1}-factor of G.

A fractional (g, f)-indicator function is a function h that assigns to each edge
of graph G a number in [0, 1] so that for each vertex x ∈ V (G) we have g(x) ≤
dGh

(x) ≤ f(x), where dGh
(x) =

∑
e∈Ex

h(e) is the fractional degree of x ∈ V (G)
with Ex = {e : x is incident to e}. Let h be a fractional (g, f)-indicator function
of a graph G. Set Eh = {e : e ∈ E(G) and h(e) �= 0}. If Gh is a spanning
subgraph of G such that E(Gh) = Eh, then Gh is called a fractional (g, f)-
factor of G. In particular, if f is a positive odd integer-valued function defined
on V (G), and set g(x) = 1 for all x ∈ V (G), Gh is a fractional (1, f)-factor of G
and dGh

(x) ∈ {1, 3, 5, · · · , f(x)}, then Gh is called a fractional (1, f)-odd factor of
G. Set f(x) = 2n − 1 for all x ∈ V (G), a fractional (1, f)-odd factor changes
into a fractional {1, 3, 5, · · · , 2n − 1}-factor. Similarly, we can define fractional
f-factors, fractional k-factors etc.. Some other notations can be founded in [3].

Various authors studied (1, f)-odd factors ([1], [5], [6], [9], [10]) of graphs.
For a vertex subset S of G and a integer-valued function f defined on V (G),

we write f(S) and dG(S) for
∑

x∈S f(x) and
∑

x∈S dG(x).
Anstee obtained a necessary and sufficient condition for a graph to have a

fractional (g, f)-factor by algorithmic methods. Liu and Zhang gave a new proof
by graph-theoretic methods.

Theorem A ([2], [7]). Let G be a graph. Then G has a fractional (g, f)-factor
if and only if for every subset S of V (G)

g(T ) − dG\S(T ) ≤ f(S),

where T = {x : x ∈ V (G) \ S and dG\S(x) ≤ g(x)}.

Let g(x) = f(x) = 1 for all x ∈ V (G), we have the following

Theorem A’ ([8]). Let G be a graph. Then G has a fractional perfect matching
if and only if for every subset S of V (G)

i(G \ S) ≤ |S|.

The following necessary and sufficient condition for a graph to have a (1, f)-odd
factor was obtained by Cui and Kano [5].

Theorem B ([5]). Let G be a tree and f : V (G) → {1, 3, 5, · · ·}. Then G has a
(1, f)-odd factor if and only if

o(G − x) ≤ f(x) for all x ∈ V (G).
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Theorem C ([5]). Let G be a graph and f : V (G) → {1, 3, 5, · · ·}. Then G has
a (1, f)-odd factor if and only if

o(G \ S) ≤ f(S) for all S ⊆ V (G).

Now, it is natural to imagine that the conditions for a graph G to have a frac-
tional (1, f)-odd factor have a similar form to fractional 1-factor. In the following
section, we discuss the existence of fractional (1, f)-odd factor of graphs. We al-
ways assume that f(x) ≤ dG(x) for all x ∈ V (G).

2 Main Results

Lemma 1. Let G be a tree and f : V (G) → {1, 3, 5, · · ·} be an odd integer-valued
function. If G has a fractional (1, f)-odd factor, then i(G − x) ≤ f(x) for all
x ∈ V (G).

Proof. If G has a fractional (1, f)-odd factor F = Gh, where h is the indicator
function. Then I(G − x) = {y : x is adjacent with y in G and dG(y) = 1}.
Obviously, for any y ∈ I(G− x), we have dG(y) = 1 and h(e) = 1 (e ∈ Ey) since
G has a fractional (1, f)-odd factor. Let Ex = {e : x is incident to e in G}. Thus
we have

i(G − x) =
∑

y∈I(G−x)
∑

e∈Ey
h(e)

=
∑

e∈EG(x,I(G−x)) h(e)
≤

∑
e∈EG(x,I(G−x)) h(e) +

∑
e∈Ex\EG(x,I(G−x)) h(e)

=
∑

e∈Ex
h(e)

= dGh
(x)

≤ f(x). ��
Remark 1. The condition i(G − x) ≤ f(x) is not sufficient for a tree to have
a fractional (1, f)-odd-factor. For example, let f(u) = f(w) = 3 and f(x) = 1
for all x ∈ V (G1) \ {u,w} in the following graph G1. Then i(G − x) ≤ f(x) for
x ∈ V (G1), but G1 has no fractional (1, f)-odd-factor.

u w

Fig. 1. Tree G1 has no fractional (1, f)-odd-factor

As we have known, a graph G has a (g, f)-factor, it must have a fractional (g, f)-
factor. But in general, graph G having a fractional (g, f)-factor may not have a
(g, f)-factor. In fact, if a tree G has a fractional (1, f)-odd factor, we have the
following
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Lemma 2. Let G be a tree and f : V (G) → {1, 3, 5, · · ·} be an odd integer-
valued function. Then G has a fractional (1, f)-odd factor if and only if G has a
(1, f)-odd factor. Furthermore, if Gh is a fractional (1, f)-odd factor of G, then
Gh is also a (1, f)-odd factor of G.

Proof. Suppose that F = Gh is a fractional (1, f)-odd factor of G and h is
the indicator function. Then 1 ≤ dGh

(x) ≤ f(x) and dGh
(x) is an odd integer.

dGh
(x) = h(Ex). Let E′h = {e : e ∈ Eh and 0 < h(e) < 1} and E′′h = {e :

e ∈ Eh and h(e) = 1}, then obviously Eh = E′h ∪ E′′h since Eh = {e : e ∈
E(G) and h(e) �= 0}. We have the following

Claim. E′h = φ.

For any edge e0 = uv ∈ E′h, then e0 is not a pendent edge. If e0 is a pendent
edge of G, then h(e0) = 1 since G has a fractional (1, f)-odd factor. Hence
the end-vertices u and v of e0 are not pendent vertices. Moreover, u and v
can not be incident only with pendent edges besides e0 since every pendent
edge e0 in G has weight 1. Without loss of generality, for any vertex x, we
suppose that the number of pendent edges incident with x is 1 or 2. We obtain
two components after deleting e0. Denote that the component containing u by
Gu, and the component containing v by Gv, respectively. In Gu, we can find
a longest path pu = ukuk−1 · · ·u1u0 starting from u and uk = u, and then
u0 is a pendant vertex since G is a tree. Thus, h(u0u1) = 1 since Gh is a
fractional (1, f)-odd factor. Furthermore, we have h(u1u2) = 0 if |NG(u1)\{u2}|
is odd and h(u1u2) = 1 if |NG(u1) \ {u2}| is even. If u2 has another branch
besides the branch containing u1, we suppose that u2u

′
1 ∈ E(G) and obtain

a longest path pu2 = u2u
′
1u
′
0 starting from u2 containing no u1. Repeat the

above procedure to pu2 , we can obtain h(u2u
′
1) = 1 or 0. Moreover we can

obtain h(u2u3) = 1 or 0. If u3 has another branch besides the branch containing
u2, then we obtain h(u3u

′
2) = 1 or 0 by the same procedure. Thus we obtain

h(u3u4) = 1 or 0. Repeating the above procedure, we have h(e) = 1 or 0 for any
e ∈ {e : e = ux ∈ E(G) and x �= v}. Consider Gv by the same way, we obtain
h(e) = 1 or 0 for all e ∈ {e : e = vx ∈ E(G) and x �= u} in the end. Thus
h(e0) = 1 or 0, which contradicts to e0 ∈ E′h. Hence E′h = φ and the claim is
proved.

Thus, if G has a fractional (1, f)-odd factor Gh, then Gh itself is a (1, f)-odd
factor of G by Claim. On the other hand, a (1, f)-odd factor F , obviously, is a
fractional (1, f)-odd factor. The theorem is proved. ��

By Lemma 2 and Theorem B, we have the following

Theorem 1. A tree G has a fractional (1, f)-odd factor if and only if for all
x ∈ V (G) ,

o(G − x) ≤ f(x).

Now we consider the existence of fractional (1, f)-odd-factors in a graph which
is not a tree. Without loss of generality, assume that G is connected, we have
the following

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



314 J. Yu and G. Liu

Theorem 2. Let G be a connected graph and f : V (G) → {1, 3, 5, · · ·} be a
positive odd integer-valued function with f(v) ≤ dG(v) for any v ∈ V (G). Then
the following statements hold.

(1) If G has a fractional (1, f)-odd factor, then i(G \ S) ≤ f(S) for every
subset S of V (G).

(2) If G is of odd order and has a fractional (1, f)-odd-factor, then G has
at least one odd cycle. In other words, bipartite graph G of odd order has no
fractional (1, f)-odd-factor.

(3) All k-regular graphs (k ≥ 1 is an integer) have fractional (1, f)-odd-
factors. In particular, each odd cycles has a fractional (1, f)-odd-factor.

(4) There exist infinite many graphs of even order which have fractional (1, f)-
odd-factor but have no (1, f)-odd-factor.

Proof. (1) Set g(x) = 1. By Theorem A, a graph has a fractional (1, f)-factor
if and only if for every subset S of V (G), |T | − dG\S(T ) ≤ f(S) holds, where
T = {x : x ∈ V (G) \ S and dG\S(x) ≤ 1}. Note that dG\S(T ) = |T | − i(G \ S),
thus |T | − dG\S(T ) ≤ f(S) changes into |T | − (|T | − i(G \ S)) ≤ f(S), that is,
i(G \ S) ≤ f(S). Since a fractional (1, f)-odd-factor is a fractional (1, f)-factor,
thus (1) holds.

(2) We prove that if G = (X,Y,E) is a bipartite graph of odd order, then
G has no fractional (1, f)-odd-factor. Without loss of generality, assume that
|X| is odd and |Y | is even. If G has a fractional (1, f)-odd-factor Gh with
indicator function h, then dGh

(X) =
∑

x∈X h(Ex) = h(EG(X,Y )) is an odd
number, and dGh

(Y ) =
∑

y∈Y h(Ey) = h(EG(X,Y )) is an even number. A
contradiction.

(3) For any k-regular graph G (k ≥ 1 is an integer), let f(x) = 1 for all
x ∈ V (G), and h(e) = 1

k for all e ∈ E(G). Then we obtain a fractional 1-factor
Gh of G. Clearly, Gh is also a fractional (1, f)-odd-factor of G. For any odd cycle
C2n+1 (n ≥ 1 is an integer), let f(x) = 1 for all x ∈ V (G) and h(e) = 1

2 for all
e ∈ E(G), we can obtain a fractional 1-factor.

(4) Consider the following graph G2. Let f(u) = f(w) = 3 and f(x) = 1
for all x ∈ V (G2) \ {u,w}. Choose S = {u,w}, then o(G2 \ S) = 8 > 6 =
f(u) + f(w) = f(S). Hence G2 has no (1, f)-odd-factor by Theorem C. Replace
C5 in G2 by any other odd cycle C2n+1, we can obtain a new graph G which has
no (1, f)-odd-factor.

u w

Fig. 2. Graph G2 has no (1, f)-odd-factor

We can find a fractional (1, f)-odd-factor by assigning values to edges in the
following way.
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Fig. 3. Graph G2 has a fractional (1, f)-odd-factor ��

Remark 2. In Theorem 2 (1), the condition i(G\S) ≤ f(S) is not sufficient for a
bipartite graph to have a fractional (1, f)-odd-factor. In the following example,
let f(u) = f(v) = f(w) = 3, and f(x) = 1 for all x ∈ V (G) \ {u, v, w}. Clearly,
i(G \ S) ≤ f(S) for all S ⊆ V (G), but G has no fractional (1, f)-odd-factor.

u

v

w

Fig. 4. Graph G3 has no fractional (1, f)-odd-factor

By above discussion, we are faced with the following

Problem 1. Whether there exists a non-bipartite graph G such that i(G \ S) ≤
f(S) for all S ⊆ V (G) , but G has no fractional (1, f)-odd-factor?

If there exists no such a graph, combine with Theorem 2, whether we can prove
that “Let G be a connected non-bipartite graph, then G has fractional (1, f)-
odd-factor if and only if i(G \S) ≤ f(S) for all S ⊆ V (G).”If this holds, in fact,
we obtain the following equivalent result, i.e., “A connected non-bipartite graph
G has a fractional (1, f)-odd-factor if and only if G has a fractional (1, f)-factor.”

Acknowledgement. The authors would like to thank Professor Qinglin Yu for
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Abstract. In this paper we give a number of structural results for the
problem of constructing minimum-weight 2-connected Steiner networks
for a set of terminals in a graph and in the plane. A sufficient condition
for a minimum-weight 2-connected Steiner network on a set of points in
the plane to be basic is also obtained. Using the structural results, we show
that the minimum-weight 2-connected Steiner network on a set of termi-
nals Z is either a minimum-weight 2-connected spanning network on Z or
isomorphic to one of several specific networks when |Z| = 6 or 7.

1 Introduction

Let G = (V,E) be a complete undirected graph with a weight function w :
E → R, where w is assumed to fulfil the requirements of a metric, i.e., it is
nonnegative, symmetric and satisfies the triangle inequity. For a subgraph H of
G, its weight is defined as the sum of the weights of its edges. Let Z ⊆ V be
a set of terminals. A subgraph G′ = (V ′, E′) of G is called a Steiner network
on Z if Z ⊆ V ′, and particularly a spanning network on Z if Z = V . The
vertices in V \ Z are called Steiner vertices. The 2-connected Steiner network
problem (2SNPG) is to find a minimum-weight 2-edge-connected Steiner network
on Z. Since a minimum-weight 2-edge-connected network is necessarily 2-vertex-
connected when the weight function is a metric [5], we use the shorthand 2-
connected in the following.

The 2SNPG has important applications in the design of low-cost survival
networks. It has been studied in the literature [1,5,6]. Monma et al. [5] mainly
focused on the special case Z = V , where they proved that there always exists
an optimal solution in which all the terminals have degree 2 or 3, and all Steiner
vertices have degree 3. Grötschel et al. [1] proved that 2SNPG is NP-hard. Winter
and Zachariasen [6] gave some structural results and presented an algorithmic
framework for this problem.

The Euclidean 2-connected Steiner network problem in the plane (2SNPP) is a
special case of 2SNPG. In this problem, the terminals are points in the plane, and
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the task is to find a shortest 2-connected network that interconnects Z, where
the length (weight) of an edge pq is the Euclidean distance between the two
points p and q. In this case Steiner vertices are referred as Steiner points. Some
structural properties of the optimal solutions for this problem were obtained in
[2,3,4]. Luebke and Provan [4] proved that the problem is NP-hard. Bounds for
the length of a shortest 2-connected Steiner network divided by the length of
a shortest 2-connected spanning network were given in [2], and approximation
algorithms for solving this problem were discussed in [2,4].

As in [6], we use SMN to denote an arbitrary minimum-weight 2-connected
Steiner network such that the total degree of all the vertices has been minimized
for 2SNPG, and use SMNP to denote an arbitrary minimum-weight 2-connected
Steiner network for 2SNPP. Luebke [3] proved that all the vertices have degree 2
or 3, and all Steiner vertices has degree 3 in an SMN. For SMNPs, Hsu and Hu
[2] proved that exactly three edges meet at 1200 angles for every Steiner point.

In this paper we will give some further structural properties for both SMNs and
SMNPs, and present a sufficient condition for an SMNP to be basic. Using the
structural results, we show that, for a set of terminals Z, the optimal solution of an
SMNG is either a shortest 2-connected spanning network on Z (which is a Hamil-
ton cycle) or isomorphic to one of several specific networks when |Z| = 6 or 7.

In order to avoid the trivial case, throughout the paper, we assume that there
does not exist a straight line containing all the terminals in SMNPs. For two
points p and q in the plane, we use pq to denote the edge connecting them.
Mathematically, pq also refers to the length of pq, i.e., the Euclidean distance
between p and q. The total length of a graph H is denoted by l(H).

2 Structural Properties of SMNs

Given a cycle C in a network N and two distinct vertices u and v on C, a chord-
path between u and v is a (u, v)-path in N that, except from u and v, shares
neither vertices nor edges with C. Note that the interior vertices of a chord-path
are not required to be of degree 2 in N . If a chord-path has only one edge, then
it is called a chord-edge. Winter and Zachariasen [6] gave the following property
of chord-paths.

Theorem 1 ([6]). Any chord-path in an SMN must have a pair of consecutive
terminals in its interior.

The following consequences are obvious.

Corollary 1 ([6]). Any chord-path in an SMN must have at least three edges.

Corollary 2. Let N be an SMN and C be a cycle in N . Then every component
of N − V (C) contains at least two terminals.

Theorem 1 and Corollary 1 can be viewed as properties of SMNs concerning
forbidden subnetworks. The following result shows that SMNs cannot contain
another kind of subnetworks.
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Theorem 2. Let N be an SMN. Then N contains no subnetwork isomorphic to
the network shown in Figure 1, where u, v, w and x are four different vertices,
uw, vx ∈ E(N), and P1 and P2 are two internally-disjoint (u, v)-paths with
|V (P1)| ≤ 3 and |V (P2)| ≤ 6.

� �

�

P1

P2

u v

w x
�

Fig. 1.

Proof. Let C = P1 ∪ P2. Then C is a cycle with at most 7 edges. Since N is
2-connected, there exist two internally-disjoint (w, x)-paths Q1 and Q2 in N .
From Corollary 1 we know that V (C) ∩ V (Q1) �= ∅ and V (C) ∩ V (Q2) �= ∅.

By the fact that each vertex of N is of degree 2 or 3, we have |V (C)| ≥ 4,
E(Q1) ∩ E(C) �= ∅ and E(Q2) ∩ E(C) �= ∅. Since C has at most seven edges,
there must exist a path R on C with |V (R) ∩ V (Q1)| = |V (R) ∩ V (Q2)| = 1
and |E(R)| = 1 or 2. This implies that R is a chord-path of some cycle of N ,
contradicting Corollary 1.

From Corollary 1 and Theorem 2, we have

Corollary 3. Let N be an SMN. Then the neighbors of a vertex of degree 3 are
pairwise nonadjacent.

3 Structural Properties of SMNPs

Let N be an SMNP. Then clearly N consists of a cycle, denoted by C(N), and the
union of some connected subnetworks inside C(N). If N − V (C(N)) contains no
cycle, then N is called basic, otherwise, nonbasic. These notions were introduced
by Hsu and Hu [2], where some properties for basic SMNPs were proved.

In this section we will give some further structural properties for both general
SMNPs and basic SMNPs. At the same time, we present a sufficient condition
for an SMNP to be basic.

Theorem 3. Let N be an SMNP on a set of points P in the plane. Then
(1) All the points in P on the sides of its convex hull lie on C(N);
(2) All the Steiner points in N lie inside the sides of the convex hull of P .

Proof. (1) By contradiction. Suppose that there exists a point p in P that is on
the sides of its convex hull and lies inside C(N). Then by the definition of convex
hulls, there exists a straight line l passing through p such that
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(i) l intersects C(N) at two points s0 and sk+1;
(ii) all the vertices of N lying on a segment of C(N) from s0 to sk+1 (not including
s0 and sk+1) are Steiner points.

We denote these Steiner points by s1, s2, . . . , sk (k ≥ 1), and assume that
these points appear on the corresponding (s0, sk+1)-segment of C(N) succes-
sively. We claim that in the polygon s0s1 · · · sksk+1, at least one of the inner
angles ∠si−1sisi+1 (1 ≤ i ≤ k) is 120◦. Otherwise, from the 1200 angle condi-
tions at the Steiner points,

∠sk+1s0s1 +
k∑

i=1

∠si−1sisi+1 + ∠sksk+1s0 = ∠sk+1s0s1 + ∠sksk+1s0 + k ∗ 240◦.

On the other hand, the sum of the inner angles of the polygon s0s1 · · · sksk+1
is

∠sk+1s0s1 +
k∑

i=1

∠si−1sisi+1 + ∠sksk+1s0 = (k + 2 − 2) ∗ 180◦ = k ∗ 180◦,

a contradiction. Without loss of generality, we assume ∠s0s1s2 = 120◦. Then,
again from the 1200 angle conditions at the Steiner points, there exists a vertex
of N that is adjacent to s1 and outside of C(N), contradicting the definition of
C(N).

(2) First, it can be proved that every vertex of N on C(N) cannot be outside
of the sides of the convex hull of P by an analysis similar to that in the proof
of (1). This means that every Steiner point cannot be outside of the sides of
the convex hull of P . Furthermore, if there is a Steiner point s lying on the
sides of the convex hull of P , then from the 1200 angle conditions at the Steiner
points, there exists a vertex of N that is adjacent to s and outside of C(N), a
contradiction. The result follows.

Theorem 4. Let N be an SMNP and C a cycle of N . Then the subnetwork of
N induced by the set of vertices of N on and inside (outside) C is 2-connected.

Proof. We only prove that the subnetwork of N induced by the set of vertices of
N on and inside C is 2-connected. The other assertion can be proved similarly.

Denote the subnetwork of N induced by the vertices on and inside C by H.
Then it suffices to prove that any pair of vertices u and v in H are contained in
a cycle of H. If both u and v are on C, then there is nothing to prove. So we
assume that at least one of u and v is inside C.

If exactly one of u and v (say u) is inside C, then by the 2-connectedness of
N , H contains a path P passing through u such that |V (P ) ∩ V (C)| = 2. It is
easy to see that u and v are contained in a cycle in H.

If both of u and v are inside C, then by the 2-connectedness of N , H con-
tains a path Q1 passing through u and a path Q2 passing through v such that
|V (Qi)∩V (C)| = 2 for i = 1, 2. If Q1∪Q2 contains a cycle passing through both u
and v, then we are done. Otherwise, it is not difficult to see that Q1∪Q2 contains
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a path Q passing through u and v such that |V (Q) ∩ V (C)| = 2. Thus, we can
find a cycle in H passing through both u and v. This completes the proof.

For basic SMNPs, we have

Theorem 5. Let N be an SMNP, and u and v be two adjacent vertices of degree
3 in N . If N is basic, then u, v ∈ V (C(N)) and uv ∈ E(C(N)).

Proof. First, we prove that u, v ∈ V (C(N)). If it is not true, we consider the
following two cases:

Case 1. Both u and v are not contained in V (C(N)).

Since N is basic, the component of N − V (C(N)) containing u and v is a tree.
Therefore, there exist two internally-disjoint paths Q1 and Q2 from u to two
distinct vertices on C(N) and two internally-disjoint paths R1 and R2 from v to
two distinct vertices on C(N), such that V (Qi)∩ V (Rj) = ∅ for i, j = 1, 2. Then
uv is a chord-edge, contradicting Corollary 1.

Case 2. Exactly one of u and v is not contained in V (C(N)).

Suppose that u ∈ V (C(N)) but v /∈ V (C(N)). Then apart from uv, there are two
other disjoint paths from v to C(N). Again, uv is a chord-edge, contradicting
Corollary 1.

Finally, uv ∈ E(C(N)). Otherwise, uv is a chord-edge in N , contradicting
Corollary 1.

Let C be a cycle, and u and v be two vertices on C. Then C is divided into
two paths. In the following by C[u, v] we denote the path from u to v in the
clockwise orientation.

Theorem 6. Let N be an SMNP on a set of points P in the plane. If at most
four points in P lie inside the sides of its convex hull, then N is basic.

Proof. Let u, v, w, x be the four points of P that are not on the sides of its convex
hull. Then, from Theorem 3 (1), they are the only vertices of N that could not
lie on C(N). If all these points lie on C(N), then we are done. Otherwise, there
must be a chord-path Q connecting two distinct vertices of C(N). By Theorem
1, Q contains at least two of u, v, w, x, say u and v, and these two vertices are
adjacent. If w and x also lie on Q, then N is basic. Otherwise, there is another
chord-path R with two end-vertices on V (C(N))∪V (Q) such that both w and x
lie on R. Clearly we need only to consider the case that both of the end-vertices
of R lie on Q.

Denote the end-vertices of Q by v1 and v2, the end-vertices of R by u1 and u2,
and the cycle formed by Q and R by C0. We assume the vertices v1, u1, u, v, u2, v2
appear on Q successively and the vertices u1, u, v, u2, w, x appear on C0 along
the clockwise orientation. From Corollary 1, |V (C(N)[v1, v2])| ≥ 4. Hence, there
exist two different vertices v3 and v4 in V (C(N)[v1, v2]) \ {v1, v2} such that
v1v3, v2v4 ∈ E(C(N)).
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By the triangle inequality, we have

uv3 ≤ l(Q[u, u1]) + l(Q[u1, v1]) + v1v3 (1)

and
vv4 ≤ l(Q[v, u2]) + l(Q[u2, v2]) + v2v4. (2)

Therefore, at least one of the following two inequalities

uv3 ≤ l(Q[u, u1]) + l(Q[u2, v2]) + v1v3

and
vv4 ≤ l(Q[v, u2]) + l(Q[u1, v1]) + v2v4

holds. Without loss of generality, we assume that uv3 ≤ l(Q[u, u1])+l(Q[u2, v2])+
v1v3.

Case 1. uv3 < l(Q[u, u1]) + l(Q[u2, v2]) + v1v3.

Let N ′ = C(N)[v3, v1] + Q[u1, v1] + uv3 + C0[u, u1]. Then N ′ is a 2-connected
Steiner network on P and l(N ′) < l(N), a contradiction.

Case 2. uv3 = l(Q[u, u1]) + l(Q[u2, v2]) + v1v3.

It follows that vv4 ≤ l(Q[v, u2]) + l(Q[u1, v1]) + v2v4. If vv4 < l(Q[v, u2]) +
l(Q[u1, v1]) + v2v4, then similar to the proof in Case 1, we can construct a new
2-connected Steiner network on P that is shorter than N , a contradiction. So
we assume that vv4 = l(Q[v, u2]) + l(Q[u1, v1]) + v2v4. Then, from (1) and (2),
we have l(Q[u1, v1]) = l(Q[u2, v2]). Thus, we obtain

uv3 = l(Q[u, u1]) + l(Q[u1, v1]) + v1v3

and
vv4 = l(Q[v, u2]) + l(Q[u2, v2]) + v2v4.

This implies that u, u1, v1 and v3 lie on a straight line, and v, u2, v2 and v4 lie
on a straight line.

From Corollary 1, |V (C(N)[v2, v1])| ≥ 4. Hence, there exists a vertex v5 ∈
V (C(N)[v2, v1]) \ {v1, v2} such that v1v5 ∈ E(C(N)).

Case 2.1. u, u1, v1 and v5 do not lie on a common straight line.

By the triangle inequality, uv5 < l(Q[u, u1]) + l(Q[u1, v1]) + v1v5 = l(Q[u, u1]) +
l(Q[u2, v2]) + v1v5. Let N ′ = C(N)[v1, v5] + Q[u1, v1] + uv5 + C0[u, u1]. Then N ′

is a new 2-connected Steiner network on P with l(N ′) < l(N), a contradiction.

Case 2.2. u, u1, v1 and v5 lie on a common straight line.

Let N ′ = C(N)[v1, v5] + v3v5 + Q[u1, v1] + Q[u2, v2] + C0 if v1v5 > v1v3, and
N ′ = C(N)[v3, v1] + v3v5 + Q[u1, v1] + Q[u2, v2] + C0 if v1v5 < v1v3. Then N ′ is
a new 2-connected Steiner network on P with l(N ′) < l(N), a contradiction.

The proof is complete.
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Corollary 4. Let N be an SMNP on a set of points P in the plane. If at most
three points in P lie inside the sides of its convex hull, then every two vertices
of degree 3 in N are nonadjacent.

Proof. By contradiction. Suppose that there exist two vertices u and v of degree
3 such that uv ∈ E(N). By Theorem 6, N is basic. From Theorem 5, we have
u, v ∈ V (C(N)) and uv ∈ E(C(N)). Then each of u and v has a neighbor inside
C(N). Denote the neighbors of u and v inside C(N) by u1 and v1, respectively.
By Theorem 5, d(u1) = d(v1) = 2. This implies that u1 and v1 are terminals
of N .

By Theorem 3 (1), there are at most three terminals in C(N). Then by Corol-
lary 2, we know that u1 and v1 must lie in a same component of N − V (C(N)).
So, there exists a (u1, v1)-path in N − V (C(N)), which implies that uv is a
chord-edge, contradicting Corollary 1.

4 Structure of SMNs on 6 and 7 Terminals

For 2SNPP, Hsu and Hu [2] proved that a shortest 2-connected Steiner network
on a set of points P in the plane is a shortest 2-connected spanning network on
P if all the points except at most one in P lie on the sides of its convex hull or
if |P | ≤ 5. It can readily be seen that these results are immediate consequences
of Corollary 1 and Theorem 3.

As a generalization of Hsu and Hu’s results, Winter and Zachariasen [6] proved
that an SMN cannot have vertices of degree 3 unless it contains at least six
terminals and showed that this bound is tight for 2SNPG. At the same time,
they conjectured that the smallest number of terminals needed for an SMNP
to have vertices of degree 3 is eight and gave a problem instance with eight
terminals where the SMNP in fact has 2 Steiner vertices.

We have the following result concerning the conjecture of Winter and
Zachariasen.

Theorem 7. Let N be an SMN on a set of terminals Z with |Z| = 6 or 7.
(1) If |Z| = 6, then N is either a shortest 2-connected spanning network on Z,
which is a shortest Hamilton cycle on Z, or isomorphic to the network shown in
Figure 2, where Z = {a, b, c, d, e, f}, and s1 and s2 are two Steiner vertices.
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Fig. 2.
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(2) If |Z| = 7, then N is either a shortest 2-connected spanning network on Z,
which is a shortest Hamilton cycle on Z, or isomorphic to the networks shown
in Figure 3, where Z = {a, b, c, d, e, f, g}, and s0, s1 and s2 are Steiner vertices.
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Fig. 3.

Proof. Suppose that N is not a cycle. Choose a cycle C in N . Then N has a
chord-path P connecting two distinct vertices of C. By Theorem 1 it is clear that
P contains two consecutive terminals. At the same time, C is divided into two
paths and each of these two paths is a chord-path in N . Again by Theorem 1,
each of these paths contains two consecutive terminals. The result follows from
|Z| = 6, 7 immediately.
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Abstract. Given a graph G and an integer k ≥ 0, the NP-complete
Induced Matching problem asks for an edge subset M such that M is
a matching and no two edges of M are joined by an edge of G. The com-
plexity of this problem on general graphs as well as on many restricted
graph classes has been studied intensively. However, little is known about
the parameterized complexity of this problem. Our main contribution is
to show that Induced Matching, which is W[1]-hard in general, admits
a linear problem kernel on planar graphs. Additionally, we generalize a
known algorithm for Induced Matching on trees to graphs of bounded
treewidth using an improved dynamic programming approach.

1 Introduction

A matching in a graph is a set of edges no two of which have a common endpoint.
An induced matching M of a graph G = (V, E) is an edge-subset M ⊆ E such
that (1) M is a matching and (2) no two edges of M are joined by an edge of G.
In other words, the subgraph induced by V (M) is precisely the graph consisting
of the edges in M . Let im(G) denote the size of a largest induced matching in G.
The decision version of the Induced Matching problem asks, given a graph G
and an integer k, whether G has an induced matching of size at least k. The
optimization version asks for an induced matching of maximum size. The In-

duced Matching problem was introduced as a variant of the maximum match-
ing problem and motivated by Stockmeyer and Vazirani [22] as the “risk-free”
marriage problem1. This problem has been intensively studied in recent years.
It is known to be NP-complete for planar graphs of maximum degree 4 [17], bi-
partite graphs of maximum degree 3, r-regular graphs for r ≥ 5, line-graphs and

� Supported by a DAAD-DST exchange program, D/05/57666.
�� Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative com-

pression for solving hard network problems), NI 369/5.
1 Find the maximum number of pairs such that each married person is compatible

with no married person except the one he or she is married to.
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Hamiltonian graphs [18]. The problem is polynomial time solvable for trees [23]
and weakly chordal graphs [6]. There exist many other results on special graph
classes (see, e.g., [5,12,19]). Regarding polynomial-time approximability, it is
known that the Induced Matching problem is APX-hard on 4r-regular graphs,
for all r ≥ 1 [23], and bipartite graphs with maximum degree 3 [10]. Moreover,
for r-regular graphs it is NP-hard to approximate Induced Matching within
a factor of r/2O(

√
ln r) [8]. There exists an approximation algorithm for the prob-

lem on d-regular graphs (d ≥ 3) with performance ratio d − 1 [10], which has
subsequently been improved to 0.75d + 0.15 [13].

In contrast to these results, little is known about the parameterized complexity
of Induced Matching. To the best of our knowledge, the only known result is
that the problem is W [1]-hard (with respect to the matching size as parameter)
in the general case [20], and hence unlikely to be fixed-parameter tractable.
Therefore, it is of interest to study the parameterized complexity of the problem
in those restricted graph classes where it remains NP-complete. In this paper, we
focus on planar graphs. The parameterized complexity of various NP-complete
problems in planar graphs has already been studied. An interesting aspect of
such studies are linear problem kernels. The intuitive idea behind kernelization is
that a polynomial-time preprocessing step removes the “easy” parts of a problem
instance such that only the “hard” core of the problem remains, which can then
be solved by other methods. We call such a core a linear kernel if we can prove
that its size is a linear function of the parameter. For a recent survey about
problem kernelization, see [14].

Using a newly introduced technique, the question of whether Dominating

Set has a linear kernel in planar graphs was answered positively by Alber et
al. [2]. The kernel size has subsequently been improved by Chen et al. [7]. More-
over, they show lower bounds on the kernel size for Dominating Set, Vertex

Cover, and Independent Set in planar graphs. The technique developed by
Alber et al. [2] has been exploited by Guo et al. [16] in developing a linear
kernel for Full-Degree Spanning Tree, a maximization problem. Moreover,
Fomin and Thilikos [11] extended the technique to graphs of bounded genus.
Very recently, Guo and Niedermeier [15] gave a generic kernelization framework
for NP-hard problems in planar graphs based on that technique. Thus far, the
technique has been applied to problems whose solutions are vertex subsets. We
give the first application of this technique for a maximization problem whose
solutions are edge subsets.

As our main result, we show that Induced Matching in planar graphs
admits a linear problem kernel. We adapt and extend the known kernelization
technique [2,16,15]. The corresponding data reduction rules can be carried out
in linear time. Moreover, we generalize an algorithm for Induced Matching

on trees by Zito [23] to graphs of bounded treewidth using an improved dynamic
programming approach, which runs in O(4ω · n) time, where ω is the width of
the given tree decomposition.

In Section 2, we start out with some basic definitions and notation. In Section 3,
we present the kernelization proof, which is the main technical contribution of
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this paper. Finally, in Section 4, we outline the algorithm on graphs of bounded
treewidth and give an outlook on possible future research.

2 Preliminaries

In this paper, we deal with fixed-parameter algorithms that emerge from the field
of parameterized complexity [9,21]. A parameterized problem is fixed-parameter
tractable if it can be solved in f(k) · nO(1) time, where f is a computable function
depending only on the parameter k. A common method to prove that a problem
is fixed-parameter tractable is to provide data reduction rules that lead to a
problem kernel. Given a problem instance (I, k), a data reduction rule replaces
that instance by another instance (I ′, k′) in polynomial time, such that (I, k) is
a yes-instance iff (I ′, k′) is a yes-instance. An instance to which none of a given
set of data reduction rules applies is called reduced with respect to this set of
rules. A parameterized problem is said to have a problem kernel if the resulting
reduced instance has size f(k) for a function f depending only on k. If f(k) = c·k
for some constant c, then we call the kernel linear. The basic complexity class
for fixed-parameter intractability is W [1] [9].

In this paper we assume that all graphs are simple and undirected. For a
graph G, let V (G) denote its vertex set and E(G) denote its edge set. For a
subset V ′ ⊆ V , let G[V ′] denote the subgraph of G induced by V ′. Let G\V ′ :=
G[V \V ′], and for v ∈ V , let G− v := G\ {v}. Let N(v) := {u ∈ V : {u, v} ∈ E}
be the (open) neighborhood of v. We assume that paths are simple, that is, each
vertex appears at most once in a path. A path P from a to b is denoted as a
vector P = (a, . . . , b), and a and b are called the endpoints of P . The length of a
path (a1, a2, . . . , aq) is q−1, that is, the number of edges on it. For an edge set M
we define V (M) :=

⋃
e∈M e. The distance d(u, v) between two vertices u, v is the

length of a shortest path between them. The distance between two edges e1, e2
is the minimum distance between two vertices v1 ∈ e1 and v2 ∈ e2.

If a graph can be drawn in the plane without edge crossings then it is planar.
A plane graph is a planar graph with a fixed embedding in the plane. Given a
plane graph, a cycle C = (a, . . . , a) of length at least three encloses an area A
of the plane. The cycle C is called the boundary of A, all vertices in the area A
are inside A. A vertex is strictly inside A if it is inside A and not part of C.

3 A Linear Kernel on Planar Graphs

In order to show our kernel, we employ the following data reduction rules. Com-
pared to the data reduction rules applied in other proofs of planar kernels [2,7,16],
these data reduction rules are quite simple and can be carried out in O(n + m)
time on general graphs and thus in O(n) time in planar graphs.

(R0) Degree Zero Rule: Delete vertices of degree zero.
(R1) Degree One Rule: If a vertex u has two distinct neighbors x, y of degree 1,

then delete x.
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(R2) Degree Two Rule: If u and v are two vertices such that |N(u)∩N(v)| ≥ 2
and if there exist two vertices x, y ∈ N(u)∩N(v) with deg(x) = deg(y) = 2,
then delete x.

Note that these data reduction rules are parameter-independent. The following
is our main theorem whose proof spans the remainder of this section.

Theorem 1. Let G = (V, E) be a planar graph reduced with respect to the rules
R0, R1, and R2. Then |V | ≤ c · im(G) for some constant c. That is, the Max-

imum Induced Matching problem in planar graphs admits a linear problem
kernel.

The basic observation is that if M is a maximum induced matching of a graph G =
(V, E) then for each vertex v ∈ V there exists a u ∈ V (M) such that d(u, v) ≤ 2.
Otherwise, we could add edges to M and obtain a larger induced matching. Since
every vertex in the graph is within distance at most two to some vertex in V (M),
we know, roughly speaking, that the edges in M have distance at most four to other
edges in M . This leads to the idea of regions “in between” matching edges that are
close to each other. We will see that these regions cannot be too large if the graph
is reduced with respect to the above data reduction rules. Moreover, we show that
there cannot be many vertices that are not contained within such regions.

This idea of a region decomposition was introduced in [2], but the definition
of a region as it appears there is much simpler since the regions are defined
between vertices, and they are smaller. The remaining part of this section is
dedicated to the proof of Theorem 1. First, in Section 3.1 we show how to find a
“maximal region decomposition” of a reduced graph that contains only O(|M |)
regions, where M is the size of a maximum induced matching of the graph. Then,
in Section 3.2 we show that a region in such a maximal region decomposition
contains only a constant number of vertices. Finally, in Section 3.3 we show that
in any reduced graph there are only O(|M |) vertices which lie outside of regions.

3.1 Finding a Maximal Region Decomposition

Definition 1. Let G be a plane graph and M a maximum induced matching
of G. For edges e1, e2 ∈ M , a region R(e1, e2) is a closed subset of the plane
such that

1. the boundary of R(e1, e2) is formed by two length-at-most-four paths
– (a1, . . . , a2), a1 �= a2, between a1 ∈ e1 and a2 ∈ e2,
– (b1, . . . , b2), b1 �= b2, between b1 ∈ e1 and b2 ∈ e2, and

by e1 if a1 �= b1 and e2 if a2 �= b2;
2. for each vertex x in the region R(e1, e2), there exists a y ∈ V ({e1, e2}) such

that d(x, y) ≤ 2;
3. no vertices inside the region other than endpoints of e1 and e2 are from M .

The set of boundary vertices of R is denoted by δR. We write V (R(e1, e2)) to
denote the set of vertices of a region R(e1, e2), that is, all vertices strictly in-
side R(e1, e2) together with the boundary vertices δR. A vertex in V (R(e1, e2))
is inside R.
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Fig. 1. An example of an M -region decomposition: black vertices denote boundary
vertices; gray vertices lie strictly inside a region and white vertices lie outside of regions.
Each region is hatched with a different pattern. Note the special cases, as for instance
regions that consist of a path like the region between e1 and e2, or regions that are
created by only one matching edge (the region on the left side of e3).

Note that the two enclosing paths may be identical; the corresponding region
then consists solely of a simple path of length at most four. Note also that e1
and e2 may be identical.

Definition 2. An M -region decomposition of G = (V, E) is a set R of regions
such that no vertex in V lies strictly inside more than one region from R. For
an M -region decomposition R, we define V (R) :=

⋃
R∈R V (R). An M -region

decomposition R is maximal if there is no R /∈ R such that R ∪ {R} is an
M -region decomposition with V (R) � V (R) ∪ V (R).

For an example of an M -region decomposition, see Fig. 1.

Lemma 1. Given a plane reduced graph G = (V, E) and a maximum induced
matching M of G, there exists an algorithm that constructs a maximal M -region
decomposition with O(|M |) regions.

Lemma 1 can be proved by exhibiting a greedy algorithm that builds a maximal
M -region decomposition in a stepwise manner by searching a region of maximal
size that is not yet in the region decomposition at the actual step of the algo-
rithm. Since this approach is similar to the algorithms by Alber et al. [2] and
Guo et al. [16], we omit the details here.

3.2 Bounding the Size of a Region

To upper-bound the size of a region R we make use of the fact that any vertex
strictly inside R has distance at most two from some vertex in δR. For this rea-
son, the vertices strictly inside R can be arranged in two layers. The first layer
consists of the neighbors of boundary vertices, and the second of all the remain-
ing vertices, that is, all vertices at distance at least two from every boundary
vertex. The proof strategy is to show that if any of these layers contains too
many vertices then there exists an induced matching M ′ with |M ′| > |M |. An
important structure for our proof are areas enclosed by 4-cycles, called diamonds.
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not empty empty

u

v v

u

Fig. 2. A diamond (left) and an empty diamond (right) in a reduced plane graph

Definition 3. Let u and v be two vertices in a plane graph. A diamond2 is a
closed area of the plane with two length-2 paths between u and v as boundary. A
diamond D(u, v) is empty, if every edge e in the diamond is incident to either
u or v.

Fig. 2 shows an empty and a non-empty diamond. In a reduced plane graph
empty diamonds have a restricted size. We are especially interested in the max-
imum number of vertices strictly inside an empty diamond D(u, v) that have
both u and v as neighbors. The following lemma is easy to show.

Lemma 2. Let D(u, v) be an empty diamond in a reduced plane graph. Then
there exists at most one vertex strictly inside D(u, v) that has both u and v as
neighbors.

Lemma 2 shows that if there are more than three edge-disjoint length-two paths
between two vertices u, v, then there must be an edge e in an area enclosed by
two of these paths such that e is not incident to u or v. This fact is used in
the following lemma to show that the number of length-two paths between two
vertices of a reduced plane graph is bounded.

Lemma 3. Let u and v be two vertices of a reduced plane graph G such that
there exists two distinct length-2 paths (u, x, v) and (u, y, v) enclosing an area A
of the plane. Let M be a maximum induced matching of G. If neither x nor y
is an endpoint of an edge in M and no vertex strictly inside A is contained
in V (M), then the following holds:

If neither u nor v is an endpoint of an edge in M , then there are at most 5
edge-disjoint length-2 paths between u and v inside A. If exactly one of u or v
is an endpoint of an edge in M , then there are at most 10 such paths, and if
both u and v are endpoints of edges in M , then there are at most 15 such paths.

Proof. The idea is to show that if there are more than the claimed number of
length-2 paths between u and v, then we can exhibit an induced matching M ′

with |M ′| > |M |, which would then contradict the optimality of M .
2 In standard graph theory, a diamond denotes a 4-cycle with exactly one chord. We

abuse this term here. Note that diamonds also play an important role in proving
linear problem kernels in planar graphs for other problems [2,15].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



The Parameterized Complexity of the Induced Matching Problem 331

v

u

w6w3w2w1 w5w4

u

v

Fig. 3. Left: An embedding of the vertices w1, . . . , w6 for the first case in the proof
of Lemma 3. Right: An embedding of 16 neighbors of u and v for the last case of the
proof. The diamonds are shaded and the “isolation paths” are drawn with dashed lines.

First, we consider the case when neither u nor v is contained in V (M). Suppose
for the purpose of contradiction that there are 6 common neighbors w1, . . . , w6
of u and v that lie inside A (that is, strictly inside and on the enclosing paths).
Without loss of generality, suppose that these vertices are embedded as shown
in Fig. 3 (left-hand side), with w1 and w6 lying on the enclosing paths. Consider
the diamond D with the boundary induced by the vertices u, v, w2, w5. Since w3
and w4 are strictly inside D and are incident to both u and v, by Lemma 3, we
know that D is not empty. That is, there exists an edge e in D which is not
incident to u or v. Clearly e is incident to neither w1 nor w6 and the endpoints
of e are at distance at least 2 from every vertex in V (M). Therefore, we can add e
to M and obtain a larger induced matching, which contradicts the optimality
of M .

Next, consider the case when exactly one of u or v is an endpoint of an
edge e in M . Using the same idea as above, it is easy to see that if there exist 11
length-2 paths between u and v, then there are at least two non-empty diamonds
(using (u, w1, v), (u, w6, v) and (u, w11, v) as “isolation paths”) whose boundaries
share only u and v. We can then replace e in M by edges e1 and e2, one from
each nonempty diamond, and obtain a larger induced matching.

The last case, when both u and v are endpoints of edges in M , can be handled
in the same way using three non-empty diamonds (see Fig. 3). 	


Lemma 3 is needed to upper-bound the number of vertices inside and outside of
regions that are connected to at least two boundary vertices.

The next two lemmas are needed to upper-bound the number of vertices that
are connected to exactly one boundary vertex. First, Lemma 4 upper-bounds
the number of such vertices under the condition that they are contained in an
area which is enclosed by a short cycle. Lemma 4 is then used in Lemma 5 to
upper-bound the total number of such vertices for a given boundary vertex. The
proofs of both lemmas are omitted due to space restrictions.

Lemma 4. Let u be a vertex in a reduced plane graph G and let v, w ∈ N(u) be
two distinct vertices that have distance at most three in G − u. Let P denote a
shortest path between v and w in G − u and let A denote the area of the plane
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u

u

Fig. 4. Worst-case embeddings to illustrate Lemma 4

enclosed by P and the path (v, u, w). If there are at least 9 neighbors of u strictly
inside A, then there is at least one edge strictly inside A.

Fig. 4 shows, for two different situations, the maximum number of neighbors
of u that can be strictly inside A such that no edge lies strictly inside A.

Lemma 5. Let u be a boundary vertex of a region R(e1, e2) in a reduced plane
graph G, and let M be a maximum induced matching of G. If u has at least 41
neighbors strictly inside R that are not adjacent to any other boundary vertex,
then we can find an induced matching M ′ with |M ′| > |M |.

Using Lemma 3 and Lemma 5, we can now upper-bound the number of vertices
inside a region.

Lemma 6. A region R(e1, e2) of an M -region decomposition of a reduced plane
graph contains O(1) vertices.

Proof. We prove the lemma by partitioning the vertices strictly inside R(e1, e2)
into two sets A and B, where A consists of all vertices at distance exactly one
from some boundary vertex, and B consists of all vertices at distance at least
two from every boundary vertex, and then showing that |A| and |B| are upper-
bounded by a constant.

To this end, partition A into A1 and A2, where A1 contains all vertices in A
that have exactly one neighbor on the boundary, and A2 all vertices that have
at least two neighbors on the boundary. To upper-bound the size of A1, observe
that due to Lemma 5, a vertex v ∈ δR on the boundary can have at most 41
neighbors in A1. Since a region has at most ten boundary vertices, we conclude
that A1 contains at most 410 vertices.

Next we upper-bound the size of A2. Consider the planar graph G′ induced
by δR∪A2. Every vertex in A2 is adjacent to at least two boundary vertices in G′.
Replace every vertex v ∈ A2 with an edge connecting two arbitrary neighbors
of v on the boundary. Merge multiple edges between two boundary vertices
into a single edge. Since G′ is planar, the resulting graph must also be planar.
As |δR| ≤ 10, using the Euler formula we conclude that the resulting graph
has at most 3 · 10 − 6 = 24 newly added edges. By Lemma 3, each such edge
represents at most 15 length-two paths, and thus |A2| ≤ 24 · 15 = 360.

To upper-bound the size of B, observe that G[B] must be a graph without
edges (that is, B is an independent set). By the Degree One Rule, each vertex
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in A has at most one neighbor in B of degree one. Therefore, there are O(1)
degree-one vertices in B. To bound the number of degree-at-least-two vertices
in B, we use the same argument as the one used to bound the size of A2.
Since |A| = O(1), there is a constant number of degree-at-least-two vertices
in B. Therefore |B| = O(1). This completes the proof. 	


Proposition 1. Let G be a reduced plane graph and let M be a maximum in-
duced matching of G. There exists an M -region decomposition such that the total
number of vertices inside all regions is O(|M |).

Proof. Using Lemma 1, there exists a maximal M -region decomposition for G
with at most O(|M |) regions. By Lemma 6, each region has a constant number
of vertices. Thus there are O(M) vertices inside regions. 	


3.3 Bounding the Number of Vertices Lying Outside of Regions

In this section, we upper-bound the number of vertices that lie outside of regions
of a maximal M -region decomposition. The strategy to prove this bound is
similar to that used in the last section. We subdivide the vertices lying outside
of regions into several disjoint subsets and upper-bound their sizes separately.

Note again that the distance from any vertex of the graph to a vertex in V (M)
is at most two. We partition the vertices lying outside of regions into two sets A
and B, where A is the set of vertices at distance exactly one from some vertex
in V (M), and B is the set of vertices at distance at least two from every vertex
in V (M). We bound the sizes of these two sets separately.

Partition A into two subsets A1 and A2, where A1 is the set of vertices that
have exactly one boundary vertex as neighbor, and A2 is the set of vertices
that have at least two boundary vertices as neighbors. Note that each vertex v
in A can be adjacent to exactly one vertex u ∈ V (M). For if it is adjacent to
distinct vertices u, w ∈ V (M), then the path (u, v, w) can be added to the region
decomposition, contradicting its maximality (recall that regions can consist of
simple paths between two vertices in V (M)). To bound the number of vertices
in A1 we need the following lemma, which is easy to prove.

Lemma 7. Let v be a vertex in A1 and let u be its neighbor in V (M). Then for
all w ∈ V (M) \ {u}, the distance between v and w in G − u is at least three.

Lemma 8. Given a maximal M -region decomposition consisting of O(|M |) re-
gions, the set A contains O(|M |) vertices.

Proof. To bound the size of A1, we claim that each vertex u ∈ V (M) has at
most 20 neighbors in A1. Suppose, for the purpose of contradiction, that 21
vertices v1, . . . , v21 in A1 are adjacent to u ∈ V (M). Also assume that they are
embedded in a clockwise fashion around u in that order. Let e be the edge in M
incident to u. First, suppose that v1 and v11 have distance at least four in G−u.
Then there exist edges ea, eb in G − u incident to v1 and v11, respectively, that
form an induced matching of size 2. Moreover by Lemma 7, the endpoints of ea
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and eb are not adjacent to any vertex of V (M) in G − u. Therefore, M ′ =
(M \ {e}) ∪ {ea, eb} is an induced matching of size larger than that of M , a
contradiction to the maximum cardinality of M . The same holds if the distance
between v11 and v21 is at least four in G − u. Therefore assume that in the
graph G − u, d(v1, v11) ≤ 3 and d(v11, v21) ≤ 3. Let P1 and P2 be shortest
paths in G − u between v1 and v11 and between v11 and v21, respectively. Note
that due to Lemma 7 these two paths cannot contain any vertex from V (M).
By Lemma 4, the areas enclosed by P1 and (v1, u, v11), and P2 and v11, u, v21,
respectively, contain an edge strictly inside them. The edge e can be replaced
by these two edges to obtain an induced matching of size larger than M , a
contradiction to the maximum cardinality of M . This proves our claim. Since
there are exactly 2 |M | vertices in V (M), this shows that the total number of
vertices in A1 is at most 40 |M |.

Next, we bound the size of A2. Every vertex v in A2 is adjacent to a vertex u ∈
V (M) and some boundary vertex w /∈ V (M). Vertex w must be adjacent to u,
for otherwise there is a path consisting of the vertices (u, v, w) and some subpath
on the boundary where w lies which can be added to the region decomposition R,
contradicting its maximality. Since there are O(|M |) regions, there are O(|M |)
possible boundary vertices adjacent to a vertex in V (M). By Lemma 3, given a
vertex x ∈ V (M) and y ∈ V \ V (R) there can be at most 10 vertices adjacent
to both x and y. This shows that A2 contains O(|M |) vertices. 	


It remains to bound the number of vertices in B, that is, the number of vertices
outside of regions that are at distance at least two from every vertex in V (M).

Lemma 9. Given a maximal M -region decomposition with O(|M |) regions, the
set B contains O(|M |) vertices.

Proof. To bound the size of B, observe that G[B] is a graph without edges. Fur-
thermore, observe that N(B) ⊆ A∪ A′, where A′ is the set of boundary vertices
in the M -region decomposition that are different from V (M). By Lemma 8 and
since the boundary of each region contains a constant number of vertices, the
set C := A ∪ A′ contains O(|M |) vertices.

First, consider the vertices in B that have degree one. Obviously, there can be
at most |C| such vertices due to the Degree One Rule. The remaining vertices
are adjacent to at least two vertices in C. We can use an argument similar to the
one used in the proof of Lemma 6 (using the Euler formula) to show that there
are O(|C|) degree-at-least-two vertices in B. Thus, |B| = O(|C|) = O(|M |). 	


Proposition 2. Given a maximal M -region decomposition with O(|M |) regions,
the number of vertices that lie outside of regions is O(|M |).

Proof. Follows from Lemmas 8 and 9. 	


Using Propositions 1 and 2, we can show that, given a reduced plane graph G and
a maximum induced matching M of G, there exists an M -region decomposition
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with O(|M |) regions such that the number of vertices inside and outside of
regions is O(|M |). This shows the O(|M |) upper bound on the number of vertices
as claimed in Theorem 1.

4 Further Results and Outlook

Zito [23] developed a linear-time dynamic programming algorithm to solve In-

duced Matching on trees. We generalize this approach to obtain a linear-
time algorithm on graphs of bounded treewidth [4]. It is relatively easy to see
that a standard dynamic programming approach would result in a running time
of O(9ω · n), where ω is the width of the given tree decomposition. With an im-
proved dynamic programming algorithm, we obtain a running time of O(4ω · n).
The description of this algorithm, which is inspired by a similar result for Dom-

inating Set [3], is omitted due to space restrictions.

Theorem 2. Let G = (V, E) be a graph with a given nice tree decomposi-
tion ({Xi | i ∈ I}, T ). Then, the size of a maximum induced matching of G
can be computed in O(4ω · n) time, where n := |I| and ω denotes the width of
the tree decomposition.

As our main result, we have shown that Induced Matching in planar graphs
admits a linear problem kernel. The data reduction rules for the planar case are
very simple and the kernelization can be done in linear time.

A possible future research topic could be search tree algorithms for planar
graphs. For Dominating Set in planar graphs, there exists a search tree al-
gorithm [1], and it is open whether a similar result for Induced Matching

on planar graphs is possible. Investigating the parameterized complexity of In-

duced Matching on other restricted classes of graphs may be of interest. We
can show simple problem kernelizations for bounded-degree graphs, graphs of
girth at least 6, C4-free bipartite graphs, and line graphs. A class of major in-
terest are bipartite graphs, where the parameterized complexity of Induced

Matching is open.

Acknowledgements. We thank Jiong Guo and Rolf Niedermeier (University of
Jena, Germany) for initiating this research and for several constructive discus-
sions and comments.

References

1. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F.A.,
Stege, U.: A refined search tree technique for dominating set on planar graphs.
Journal of Computer and System Sciences 71(4), 385–405 (2005)

2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. Journal of the ACM 51(3), 363–384 (2004)

3. Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for
domination-like problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286,
pp. 613–628. Springer, Heidelberg (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



336 H. Moser and S. Sikdar

4. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

5. Cameron, K.: Induced matchings in intersection graphs. Discrete Mathemat-
ics 278(1-3), 1–9 (2004)

6. Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in
weakly chordal graphs. Discrete Mathematics 266(1-3), 133–142 (2003)

7. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM Journal on Computing (to
appear)
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Abstract. Let G be a 3-connected graph and e an edge of G. If, by
deleting e from G, the resultant graph G − e is a 3-connected graph or a
subdivision of a 3-connected graph, then e is called a removable edge of
G. In this paper we obtain that there are at least two removable edges in
a spanning tree of a 3-connected 3-regular graph. Also we give an O(n3)
time algorithm to find all removable edges in G.

Keywords: 3-connected 3-regular graph, removable edge, edge-vertex-
cut fragment.

1 Introduction

The concepts of contractible edges and removable edges of graphs are very im-
portant in studying the structures of graphs and in proving some properties of
graphs by induction. In 1961, W.T.Tutte [8] gave the structural characterization
for 3-connected graphs by using the existence of contractible edges and remov-
able edges. He proved that every 3-connected graph with order at least 5 contains
contractible edges. Perhaps, this is the earliest result concerning the concepts
of contractible edges and removable edges. In this paper, we shall focus on the
study of only removable edges in 3-connected graphs. First of all, we give the
definition of a removable edge for a 3-connected graph. Let G be a 3-connected
graph and e an edge of G. Consider the graph G − e obtained by deleting the
edge e from G. If G − e has vertices of degree 2, we do the following operations
on G − e. For each vertex x of degree 2 in G − e, we delete x from G − e and
then connect the two neighbors of x by an edge. If multiple edges occur, we use
single edge to replace them. The final resultant graph is denoted by G � e. If
G � e is still 3-connected, then the edge e is called removable; otherwise, it is
called unremovable. The set of all removable edges of G is denoted by ER(G);
whereas the set of unremovable edges of G is denoted by EN (G). In [3], Holton
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et.al discussed the distribution and number of removable edges in 3-connected
graphs. In [6], Su got the lower bound of the number of removable edges of 3-
connected graphs and described the structural characterization of graphs which
can attain the lower bound. Moreover, Su studied the distribution of removable
edges of cycles in 3-connected graphs [7]. Ou et.al got the following result in [5]:

Theorem 1.1. Let G be a 3-connected 3-regular graph. Then any spanning tree
of G contains at least one removable edge.

In fact, our main theorem improves the above result.
Let G be a graph. The vertex set and the edge set of G are denoted by V (G)

and E(G), respectively. If x ∈ V (G), we also write x ∈ G. We denote by |G|
and |E(G)| the order and the size of G, respectively. For x ∈ G, the set of
adjacent vertices of x in G is denoted by ΓG(x) and the degree of x is denoted
by dG(x)(or briefly d(x)). If the endvertices of an edge of G are x and y, then we
write e = xy. Let A, B ⊂ V (G) such that A �= Ø �= B and A∩B = Ø. We define
〈A, B〉 = {xy ∈ E(G)|x ∈ A, y ∈ B}. Let F (resp. N) be a nonempty subset
of E(G)(resp. V (G)). The subgraph of G induced by F (resp. N) is denoted by
〈F 〉(resp. 〈N〉). If H is a subgraph of G, we also say that G contains H . We
often identify a subgraph H of G with its vertex set V (H). Let S ⊂ V (G). G−S
denotes the graph obtained by deleting all the vertices in S from G together
with all the incident edges. The vertex set S is said to be a vertex cut of G if
G − S is disconnected. If |S| = s, the vertex set S is said to be a s-vertex cut of
G. A l-cycle of G is a cycle with length l in G. The girth of G is the length of a
shortest cycle in G and is denoted by g(G). For other graph-theoretic notation
not mentioned here, we refer the reader to [1].

2 Preliminary Knowledge

Let G be a 3-connected graph. For e ∈ E(G) and S ⊂ V (G) with |S| = 2, if
G − e − S has exactly two (connected) components, say A and B, such that
|A| ≥ 2 and |B| ≥ 2, then we say that (e, S) is a separating pair and (e, S; A, B)
is a separating group, in which A and B are called edge-vertex-cut fragments. The
edge-vertex-cut fragment with the minimum vertices is called an edge-vertex-cut
atom.

Let (xy, S; A, B) be a separating group of G where x ∈ A, y ∈ B and S =
{a, b}. If |A| = 2, we take that A = {x, z}. From the fact that G is 3-connected,
we have that zx, za, zb ∈ E(G) and {xa, xb} ∩ E(G) �= Ø. So we get a 3-cycle
xazx or xbzx. Then g(G) = 3.

Let E0 ⊂ EN (G) and E0 �= Ø, and let (xy, S; A, B) be a separating group
where x ∈ A,y ∈ B. If xy ∈ E0, we say A and B are E0-edge-vertex-cut frag-
ments. An E0-edge-vertex-cut fragment is called an E0-edge-vertex end-fragment
if it does not contain any other E0-edge-vertex-cut fragment of G as its proper
subset.

In the sequel, we list some known results on removable edges of 3-connected
graphs, which will be used in the next section.
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Theorem 2.1([3]). Let G be a 3-connected graph with |G| ≥ 6. An edge e of
G is unremovable if and only if there is a separating pair (e, S) or a separating
group (e, S; A, B) in G.

Theorem 2.2([3]). Let G be a 3-connected graph with |G| ≥ 6 and (e = xy, S)
a separating pair of G. Then every edge joining S and {x, y} is removable.

Theorem 2.3([3]). Let G be a 3-connected graph with |G| ≥ 6 and C a cycle
of G. Suppose that no edges of C are removable. Then there exists a vertex
a ∈ V (G) such that d(a) ≥ 4.

Theorem 2.4([3]). Let G be a 3-connected with |G| ≥ 6 and (xy, S = {a, b}) a
separating pair of G. If ab ∈ E(G), then ab ∈ ER(G).

Theorem 2.5([7]). Let G be a 3-connected 3-regular graph with |G| ≥ 6 and C
a 3-cycle of G. then E(C) ⊂ ER(G).

3 Main Results

Before we give our main result, we need to show the following lemmas.

Lemma 3.1. Let G be a 3-connected 3-regular graph. y1y2...yk is a path in
〈EN (G)〉 where k ≥ 3. Let Ø �= D ⊂ V (G). Suppose that there is a separating
group (y1y2, S1; A1, B1) of G where y1 ∈ B1, y2 ∈ A1 and D ∩ B1 �= Ø. We
take a separating group (yiyi+1, S; A, B) where yi ∈ B, yi+1 ∈ A, D ∩ B �= Ø
such that |A| is as small as possible. If i ≤ k − 2, we get another separating
group (yi+1yi+2, S

′; A′, B′) where yi+1 ∈ B′ and yi+2 ∈ A′. For those separating
groups, we have the following conclusions hold:

yi+1 ∈ A ∩ B′, yi ∈ B ∩ B′, yi+2 ∈ A ∩ A′. D ∩ B = B ∩ S′ = {c} where
c ∈ V (G). |A ∩ S′| = |B′ ∩ S| = 1. S ∩ S′ = Ø = B ∩ A′. A′ ∩ S = {d}. Then
cd ∈ EN (G).

Proof. Clearly, yi+1 ∈ A∩B′. It follows from Theorem 2.2 that yi ∈ B ∩B′ and
yi+2 ∈ A ∩ A′. Let

X1 = (B′ ∩ S) ∪ (S ∩ S′) ∪ (A ∩ S′), X2 = (A ∩ S′) ∪ (S ∩ S′) ∪ (A′ ∩ S),
X3 = (A′ ∩ S) ∪ (S ∩ S′) ∪ (B ∩ S′), X4 = (B ∩ S′) ∪ (S ∩ S′) ∪ (B′ ∩ S).

Since A∩A′ �= Ø, we know that X2 is a vertex cut of G−yi+1yi+2. Noticing that G
is 3-connected, then |X2| ≥ 2. By a similar argument, we can get |X4| ≥ 2. From
|X2| + |X4| = |S| + |S′| = 4, we get that |X2| = |X4| = 2. So |B′ ∩ S| = |A ∩ S′|,
|B ∩ S′| = |A′ ∩ S|.

WeclaimthatA∩A′ = {yi+2}.Otherwise, |A∩A′| ≥ 2.LetC′ = A∩A′,T ′ = X2
and D′ = G−yi+1yi+2 −T ′−C′. We get a separating group (yi+1yi+2, T

′; C′, D′).
Clearly, D′ ∩ D �= Ø and |C′| < |A|. This contradicts the choice of A.

Since |A′| ≥ 2 and A′ is a connected subgraph of G, we get that A′ ∩ S �= Ø.
If |A′ ∩ S| = |B ∩ S′| = 2, then |X1| = 0. So {yi, yi+2} is a 2-vertex cut of G.
This is a contradiction. Hence, |A′ ∩ S| = |B ∩ S′| = 1. From |S| = |S′| = 2, we
get |S ∩ S′| ≤ 1. Next we discuss the following cases.
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Case 1. |S ∩ S′| = 1. We have that B′ ∩ S = Ø = A ∩ S′. Let S ∩ S′ = {a},
A′ ∩ S = {b} and B ∩ S′ = {c}.

We claim that A ∩ B′ = {yi+1}. Otherwise, |A ∩ B′| ≥ 2. We can get a 2-
vertex cut {a, yi+1} of G, which is a contradiction. Since d(yi+1) = 3, we have
ayi+1 ∈ E(G). Similarly, ayi+2 ∈ E(G).

If A′ ∩ B �= Ø, then {a, b, c} is a 3-vertex cut of G. So ΓG(a) ∩ (A′ ∩ B) �= Ø.
If A′ ∩ B = Ø, then A′ = {yi+1, b}. So we get that ab ∈ E(G). That is to say
ΓG(a) ∩ (A′ ∩ S) �= Ø. Thus, we deduce that ΓG(a) ∩ ((A′ ∩ S) ∪ (A′ ∩ B)) �= Ø.

Since B ∩ B′ �= Ø, we get a 3-vertex cut {yi+1, a, c} of G. Then ΓG(a) ∩ (B ∩
B′) �= Ø. Then d(a) ≥ 4. This contradicts the fact that G is 3-regular. Hence,
this case is impossible.

Case 2. |S ∩ S′| = 0. We have that |B′ ∩ S| = |A ∩ S′| = 1. Without loss of
generality, let A∩S′ = {a}, B′∩S = {b}, B∩S′ = {c} and A′∩S = {d}. Clearly,
|X3| = 2. Since G is 3-connected, we deduce that B ∩ A′ = Ø. So |A′| = 2.
Noticing the minimality of |A| and |A| ≥ 3, we know that B′ ∩ D = Ø. So
B ∩D = B ∩S′ = {c}. Hence, we get that cd ∈ E(G). Let C1 = B,T1 = {yi+1, b}
and D1 = G − cd − C1 − T1. Clearly, (cd, T1; C1, D1) is a separating group of G.
So cd ∈ EN (G). Now, the proof is complete. �
Lemma 3.2. Let G be a 3-connected 3-regular graph. If 〈EN (G)〉 is a tree, then
|〈EN (G)〉| ≤ |G| − 2.

Proof. By contradiction. We assume that |〈EN (G)〉| ≥ |G| − 1. Let x be a leaf
of 〈EN (G)〉. Since dG(x) = 3 and |〈EN (G)〉| ≥ |G| − 1, there exists a vertex
y ∈ 〈EN (G)〉 such that xy ∈ ER(G). Let P be a path connecting x and y
in 〈EN (G)〉. Then P + xy is a cycle containing xy in G. So we take a cycle
C = y1y2...yky1 in G such that y1yk ∈ ER(G) and E(C) − {y1yk} ⊂ EN (G).

Let D = {y1}. We take a separating group (y1y2, S1; A1, B1) such that y1 ∈
B1, y2 ∈ A1. Clearly, D ∩ B1 �= Ø. We take i ∈ {1, 2, ...k − 1} and a separating
group (yiyi+1, S; A, B) where yi ∈ B, yi+1 ∈ A and D ∩ B �= Ø such that |A| is
as small as possible.

We claim that i < k−1. Otherwise, i = k−1. So we have that yk ∈ A. Noticing
that y1yk ∈ E(G), we get that y1 ∈ A ∪ S. This contradicts that D ∩ B �= Ø.

Now we take another separating group (yi+1yi+2, S
′; A′, B′) where yi+1 ∈ B′

and yi+2 ∈ A′. This satisfies the condition of Lemma 3.1. Without loss of gener-
ality, let D ∩B = B ∩S′ = {c}, A′ ∩S = {d} and A∩S′ = {a}. So c = y1. Since
y1d(= cd) ∈ EN (G) and y1yk ∈ ER(G), we deduce that d �= yk and yk ∈ B′−A.
Since yi+2 ∈ A ∩ A′, we get that the distance between yi+2 and yk is at least
2. So i + 2 ≤ k − 2. Noticing that yi+3 ∈ ΓG(yi+2) = {yi+1, a, d}, we have that
yi+3 = a or yi+3 = d. If yi+3 = a, by Theorem 2.2, yi+2yi+3 ∈ ER(G). This
is a contradiction. So yi+3 = d. We take a cycle C′ = y1y2...yi+3y1. Clearly,
E(C′) ⊂ EN (G). However, by Theorem 2.3, we know 〈EN (G)〉 does not contain
any cycle. So this also leads to a contradiction. Therefore, |〈EN (G)〉| ≤ |G|−2.�
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Lemma 3.3. Let G be a 3-connected graph. If there exists a spanning tree T ′

which contains at most one removable edge, then g(G) = 3.

Proof. Let E0 = EN (G)∩E(T ′) and F = E(T ′)−E0. Then we have that |F | ≤ 1.
Take a separating group (uw, S′; A′, B′) where u ∈ A′, w ∈ B′ and uw ∈ E0.
From |F | ≤ 1, we can get that (E(A′)∪〈A′, S′〉)∩F = Ø or (E(B′)∪〈B′, S′〉)∩
F = Ø. Without loss of generality, we assume (E(A′) ∪ 〈A′, S′〉) ∩ F = Ø. Since
A′ is an E0-edge-vertex-cut fragment, we have an E0-edge-vertex end-fragment
A as its subset. Let (xy, S; A, B) be a separating group where x ∈ A, y ∈ B and
xy ∈ E0. If |A| = 2, the result is easy to be established. Next, we only need to
discuss the case |A| ≥ 3. Since T ′ is a spanning tree of G, we have that edge
uz ∈ (E(A)∪〈A, S〉)∩E0 . Take its corresponding separating group (uz, T ; C, D)
where u ∈ C and z ∈ D. We assume w.l.o.g. that u ∈ A. Clearly, u = x or u �= x.
Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ), X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (S ∩ D),
X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ), X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (S ∩ C).

We will distinguish the following cases to complete the proof.

Case 1. u = x. By Theorem 2.2, we know that z ∈ A ∩ D and y ∈ B ∩ C. Since
A ∩ D �= Ø, X2 is 2-vertex cut of G − xz. So |X2| ≥ 2. By a similar way, we
can get |X4| ≥ 2. Noticing that |X2| + |X4| = 4, we have |X2| = |X4| = 2. So
|D ∩ S| = |B ∩ T |.

We claim that A∩D = {z}. Otherwise, |A∩D| ≥ 2. Let A1 = A∩D, S1 = X2
and B1 = G−xz −S1 −A1. So (xz, S1; A1, B1) is a separating group of G. Since
xz ∈ E0, A1 is an E0-edge-vertex-cut fragment which is a proper subset of A.
This contradicts that A is an E0-edge-vertex end-fragment.

Since |D| ≥ 2 and D is connected, we have that |D ∩ S| = |B ∩ T | ≥ 1. If
|D∩S| = |B∩T | = 2, then |X1| = 0 and hence {z, y} is a 2-vertex cut of G. This
is a contradiction. So |D ∩ S| = |B ∩ T | = 1. Then |S ∩ T | ≤ 1. If |S ∩ T | = 1,
then C ∩S = A∩T = Ø. Since |A| ≥ 3 and |A∩D| = 1, we get that |A∩C| ≥ 2.
So {x} ∪ (S ∩ T ) is a 2-vertex cut of G. Therefore, |S ∩ T | = 0. So |X3| = 2.
Hence we get that B ∩ D = Ø and |D| = 2. Obviously, g(G) = 3.

Case 2. u �= x. Then uz ∈ E(A) or uz ∈ 〈A, S〉. Since xy ∈ EN (G), we know
that xy /∈ E(T ). We will discuss the following cases to proceed the proof.

(2.1) uz ∈ E(A). We get that u ∈ A ∩ C and z ∈ A ∩ D.

(2.1.1) x ∈ A∩C, y ∈ B ∩C. By a similar argument used in Case 1, we have
that A ∩ D = {z} and |D ∩ S| = |B ∩ T | = 1. Then |S ∩ T | ≤ 1.

We claim that |S ∩ T | = 0. If not, then we have C ∩ S = A ∩ T = Ø. Let
A1 = A∩C, S1 = {z}∪(S∩T ) and B1 = G−xy−S1−A1. Clearly (xy, S1; A1, B1)
is a separating group. Since xy ∈ E0, A1 is an E0-edge-vertex-cut fragment,
which is a proper subset of A. This contradicts that A is an E0-edge-vertex
end-fragment.

So |X3| = 2 and then B ∩ D = Ø. Therefore |D| = 2. It is easy to see that
g(G) = 3.
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(2.1.2) x ∈ A ∩ T , y ∈ B ∩ C. Since A ∩ D �= Ø, X2 is a vertex cut of
G − uz. So |X2| ≥ 2. Similarly, |X4| ≥ 2. From |X2| + |X4| = 4, we have that
|X2| = |X4| = 2. Then, |C ∩S| = |A∩T | ≥ 1 and so |D ∩S| ≤ |S|− |C ∩S| = 1.
Hence, |X1| ≥ 2. From |X1| + |X3| = 4, we have |X3| ≤ 2. Then B ∩ D = Ø.
Since |X2| = 2, similar to Case 1, we know that A ∩ D = {z}. Since |D| ≥ 2,
|S ∩D| = |D|− |A∩D| ≥ 1. So we have that |S ∩D| = 1 and |D| = 2. Obviously,
g(G) = 3.

(2.1.3) x ∈ A∩C, y ∈ B ∩T . Since A∩D �= Ø, X2 is a vertex cut of G−uz.
So |X2| ≥ 2. Then |X4| ≤ 2 and B ∩ C = Ø.

We claim that A ∩ T = Ø. Otherwise, A ∩ T �= Ø. Noticing that y ∈ B ∩ T
and |T | = 2, we have that |A ∩ T | = 1. So |X1| ≥ 1. Suppose |X1| = 1. Let
A′ = A ∩ C,S′ = X1 ∪ {z} and B′ = G − xy − S′ − A′. Then (xy, S′; A′, B′)
is a separating group of G. However, A′ ⊂ A and |A′| < |A|. This contradicts
the fact that A is an E0-edge-vertex end-fragment. So |X1| ≥ 2 and |X4| ≤ 2.
Therefore, B ∩ D = Ø and B = B ∩ T = {y}. This contradicts that |B| ≥ 2.

Since |X2| ≤ |S| = 2, we have that |X2| = |S|. So C ∩ S = Ø. Clearly,
C = A ∩ C. We can deduce that C is an E0-edge-vertex-cut fragment which is a
proper subset of A. This is a contradiction. So the subcase is impossible.

By symmetry, the other cases are similarly discussed.

(2.2) uz ∈ 〈A, S〉. Then we have that u ∈ A ∩ C, z ∈ D ∩ S. We will discuss
the following cases to complete the proof.

(2.2.1) x ∈ A ∩ C, y ∈ B ∩ C. Since B ∩ C �= Ø, we get that X4 is a vertex
cut of G − xy. So |X4| ≥ 2. Then |X2| ≤ 2. We have that A ∩ D = Ø.

We claim that A ∩ T �= Ø. Otherwise, A ∩ T = Ø. Then |A| = |A ∩ C| ≥ 3.
Since X1 is a vertex cut of G − xy − uz, we get that |X1| ≥ 1. Noticing that
z ∈ D∩S and |S| = 2, we have |X1| = |S ∩(C ∪T )| = 1. Let A1 = A−{u}, S1 =
X1 ∪{u}, B1 = G− xy − S1 − A1. Then (xy, S1; A1, B1) is a separating group of
G. Clearly, A1 is an E0-edge-vertex-cut fragment which is a proper subset of A.
This contradicts that A is an E0-edge-vertex end-fragment.

Since A ∩ T �= Ø, we have |T ∩ (S ∪ B)| ≤ 1. From |X4| ≥ 2, we get
|S ∩ C| ≥ |A ∩ T | ≥ 1. Noticing that |S| = 2, we get that |S ∩ D| = 1 and
|X3| ≤ 2. Hence, B ∩ D = Ø. Then D = {z}. This contradicts that |D| ≥ 2. So
this subcase is not possible.

(2.2.2) x ∈ A ∩ C, y ∈ B ∩ T .
If A ∩ T = Ø, noticing that A is connected, then we have that A ∩ D = Ø.

Similar to (2.2.1), we can get an E0-edge-vertex-cut fragment A1 = A−{u} as a
proper subset of A, which contradicts that A is an E0-edge-vertex end-fragment.
So A ∩ T �= Ø. Since y ∈ B ∩ T and |T | = 2, we get that |B ∩ T | = |A ∩ T | = 1
and S ∩ T = Ø.
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If C∩S = Ø, noticing that C is connected, then B∩C = Ø. Clearly, C is an E0-
edge-vertex-cut fragment which is a proper subset of A. This is a contradiction.
So C ∩S �= Ø. From |S| = 2, we know that |C ∩S| = |D∩S| = 1 and |S ∩T | = 0.

Since |X3| = 2 = |X2|, we can deduce that B ∩ D = Ø = A ∩ D. Then
D = {z}, which contradict that |D| ≥ 2. So this subcase is impossible.

(2.2.3) x ∈ A ∩ T, y ∈ B ∩ C. Since B ∩ C �= Ø, we have that |X4| ≥ 2.
Noticing that |A ∩ T | ≥ 1, we have |S ∩ C| = |X4| − (|T | − |A ∩ T |) ≥ 1. Since
|S| = 2 and z ∈ D∩S, we know that |S ∩C| = |D∩S| = 1 and S ∩T = Ø. From
|X4| ≥ 2 and |T | = 2, we get that |B ∩ T | = |A ∩ T | = 1. Since |X2| = |X3| = 2,
we deduce A∩ D = Ø = B ∩ D. So D = {z}, which contradicts that |D| ≥ 2. So
this subcase is impossible.

(2.2.4) x ∈ A ∩ T, y ∈ B ∩ D. By a similar argument used in (2.2.2), we can
deduce that |C ∩ S| = 1 = |D ∩ S| and |S ∩ T | = 0. Since X1 is a vertex cut
of G − uz, |X1| ≥ 2. Similarly, |X3| ≥ 2. From |X1| + |X3| = |S| + |T | = 4, we
have that |X1| = |X3| = 2. So |A ∩ T | = |D ∩ S|, |C ∩ S| = |B ∩ T |. Then we get
|B ∩ T | = |A ∩ T | = 1.

From |X2| = |X4| = 2, we can deduce that A∩D = Ø = B ∩C. Since |A| ≥ 3,
we have |A ∩ C| ≥ 2. Let A1 = A ∩ C, S1 = X1, B1 = G − uz − S1 − A1. Then
(uz, S1; A1, B1) is a separating group of G and A1 is an E0-edge-vertex-cut frag-
ment which is a proper subset of A. This is a contradiction. So this subcase is
impossible.

(2.2.5) x ∈ A ∩ D, y ∈ B ∩ T . Since X1 is a vertex cut of G − uz, we
have |X1| ≥ 2. Noticing that |X1| + |X3| = 4 and |X3| ≥ 2, we get that
|X1| = |X3| = 2. Then |B ∩ T | = |C ∩ S| = |A ∩ T | = |D ∩ S| = 1 and
S ∩ T = Ø. Since |X3| = |X4| = 2, we dan deduce that B ∩ D = B ∩ C = Ø. So
|B| = |B ∩ T | = 1. This is a contradiction. This subcase is impossible.

(2.2.6) x ∈ A ∩ D, y ∈ B ∩ D. By an argument analogous to that used in
(2.2.2), we can deduce that |C ∩ S| = 1 = |D ∩ S| and |S ∩ T | = 0.

Since X1 is a vertex cut of G − uz, we get |X1| ≥ 2. Similarly, we have
|X3| ≥ 2. From |X1| + |X3| = 4, we can get |X1| = |X3| = 2. So we have
|B ∩ T | = |C ∩ S| = 1 = |A ∩ T | = |D ∩ S|. Therefore, |X1| = |X4| = 2. So
B ∩ C = Ø.

We claim that A ∩ C = {u}. Otherwise, |A ∩ C| ≥ 2. Noticing that |X1| = 2,
by a similar argument used in (2.2.4), we can get A1 = A ∩ C is an E0-edge-
vertex-cut fragment which is a proper subset of A. This is a contradiction. Thus,
|C| = |A ∩ C| + |S ∩ C| = 2 and so g(G) = 3.

The proof is now complete. �
Now, we present our main result.

Theorem 3.4. Let G be a 3-connected 3-regular graph and T ′ a spanning tree
of G. Then |E(T ′) ∩ ER(G)| ≥ 2.
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proof. By Theorem 2.3, we know that 〈EN (G)〉 does not contain any cycle. We
will distinguish the following cases to proceed the proof.

Case 1. 〈EN (G)〉 is connected. It follows from Lemma 3.2 that |〈EN (G)〉| ≤
|G|−2. Since T ′ is a spanning tree of G, it is easy to see that |E(T ′)∩ER(G)| ≥ 2.

Case 2. 〈EN (G)〉 is not connected. If 〈EN (G)〉 is not a spanning forest of G,
clearly, |E(T ′)∩ER(G)| ≥ 2. Next we suppose that 〈EN (G)〉 is a spanning forest.
Let its components be T1, T2, ...Tk. We claim that k ≥ 3. By contradiction. We
assume that k = 2. Let its two components be T1, T2. Clearly, |T1| ≥ 2, |T2| ≥ 2.
Let v be a leaf of T1 and ΓG(v) = {a, b, c} where a ∈ T1. We claim that b, c ∈ T2.
Otherwise, without loss of generality, b ∈ T1. Then bv ∈ ER(G). So there is
a cycle C′ which contains bv and E(C′) − bv ⊆ EN (G). Similar to the proof
of Lemma 3.2, we can get a contradiction. Let u be a vertex of degree 2 in
T1. If ΓG(u) ⊂ V (T1), then there exists a vertex u1 ∈ V (T1) such that uu1 ∈
ER(G). Similar to Lemma 3.2, we can also deduce a contradiction. For T2, we
can discuss it in a similar way. Therefore, 〈ER(G)〉 is a bipartite graph. On the
other hand, let T ′′ = T1 + T2 ∪ {uv} where u ∈ T1, v ∈ T2 and uv ∈ ER(G).
Clearly, T ′′ is a spanning tree of G and |E(T ′′) ∩ ER(G)| = 1. By Lemma 3.3,
g(G) = 3. Let C be a 3-cycle of G. Since G is 3-regular, by Theorem 2.5, we
know that E(C) ⊂ ER(G). That is to say 〈ER(G)〉 contains a 3-cycle, which
contradicts that 〈ER(G)〉 is a bipartite graph. So k ≥ 3. Now, it is easy to see
that |E(T ′) ∩ ER(G)| ≥ 2. The proof is now complete. �
Finally, to end the paper, we design a polynomial time algorithm to detect all
removable edges in a 3-connected 3-regular graph G. Let |G| = n. Clearly, we
can observe that

Lemma 3.5. Let G be a 3-connected 3-regular graph and e = xy an edge. If
neither x nor y belongs to a triangle of G, then G � e is still 3-regular.

In [2], there is a polynomial time algorithm to find the vertex connectivity of
graphs. When the algorithm is used to a 3-regular graph, we can get an O(n2)
algorithm to determine whether it is 3-connected. For convenience, we call the
algorithm Fast-Connect. Now, we give our algorithm to determine whether an
edge e = xy is removable:

(1) If e is in some triangle of G, according to Theorem 2.5, then e is removable.
otherwise, to (2)
(2) If x or y is in some triangle, noticing that the minimum degree of G� e is 2,
then we have that e is unremovable. Otherwise, to (3)
(3) Use algorithm Fast-Connect to determine whether G � e is 3-connected. If
G � e is 3-connected, then e is removable. Otherwise, e is unremovable.

Next, we simply analyze the complexity of the algorithm. Obviously, it take
O(n2) time to determine if an edge e is removable. So the total time is O(n3)
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to detect the number of removable edges of a 3-connected 3-regular graph, since
|E(G)| = 3/2n.
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